ChronoTE: Crosstalk-Aware Timing Estimation for
Routing Optimization via Edge-Enhanced GNNs

Leilei Jin, Rongliang Fu, Zhen Zhuang, Liang Xiao, Fangzhou Liu, Bei Yu, Tsung-Yi Ho
The Chinese University of Hong Kong

Abstract—Accurate timing estimation during the routing stage
is critical for modern VLSI design closure, especially under
increasing crosstalk effects in advanced technology nodes. During
the routing process, the crosstalk effect is usually modeled by
predicting coupling capacitance with congestion information.
However, such estimations are often overly pessimistic, as crosstalk-
induced delay is influenced not only by coupling capacitance
but also by the relative arrival times of signals. In this work,
we propose ChronoTE, a novel edge-enhanced graph neural
network (GNN) framework that performs crosstalk-aware net
delay estimation by jointly modeling physical topology and timing
characteristics. By embedding timing-window-aware features
into edge representations, ChronoTE enables accurate delay
prediction without requiring full routing or parasitic extraction.
Experimental results on industrial-scale open-source designs
demonstrate that ChronoTE, by delivering sign-off quality
delay estimation in the early global routing stage, significantly
accelerates design closure and contributes to area reduction.

Index Terms—timing estimation, crosstalk-induced delay

I. INTRODUCTION

The proliferation of 2.5D/3D heterogeneous integration and
high-performance computing (HPC) has intensified the demand
for increasingly dense interconnects [1]. In these scenarios,
cross-coupling between adjacent nets becomes more complex
as cell density increases, leading to significant crosstalk
noise [2] [3] [4]. Coupling capacitance acts as an additional
load, contributing to incremental delay and increased static
power dissipation. Furthermore, the amplitude of this noise can
reach up to 30% of the supply voltage (Vyq) [5], potentially
causing glitches that pose risks of logic errors and unwanted
dynamic power consumption. Therefore, effective crosstalk
mitigation is crucial, particularly during global routing [3].

To alleviate crosstalk during routing, techniques such as
layer assignment and area detouring have been proposed [3],
[6], aiming to reduce coupling by increasing net spacing.
Yet, most routing engines lack accurate crosstalk analysis
capabilities, as parasitic information is typically available only
after multiple routing iterations and parasitic extraction [7].
While some approaches attempt to estimate crosstalk based on
congestion metrics [3], congestion and crosstalk do not always
correlate, since physical proximity does not necessarily imply
timing-critical coupling. As illustrated in Fig. 1, conventional
wirelength-based estimation incorrectly identifies net A’s path
(Pathl) as the critical path when crosstalk effects are neglected.
In reality, the critical path is Path2, due to the overlapping
signal timing window (represented by the gray parallelogram)
between nets B and C, which introduces a crosstalk-induced
delay (delta delay highlighted in pink). Incorrect critical path

net A

= Timing window

net B

Yo Delta delay

net C

o
. L
2.24ns2.25n;

(b) Crosstalk-induced delta delay

(a) Crosstalk between adjacent nets

Fig. 1: Impact of crosstalk coupling on net delay and critical
path misidentification.

identification leads to inaccurate estimations of total negative
slack (TNS) and worst negative slack (WNS), leading to
additional routing iterations. Hence, accurate crosstalk analysis
is essential to ensure reliable timing analysis. While precise
crosstalk analysis can be achieved through sign-off stage
dynamic SPICE simulations, their high computational cost
renders them impractical for large-scale designs [2]. As a
result, designers rely on static timing analysis (STA) tools
such as PrimeTime-SI [8], which estimate crosstalk-induced
delay during the sign-off stage using timing-window analysis.
However, these tools rely on parasitic information, making
them unsuitable for early-stage design.

To address this challenge, several machine learning (ML)-
based timing prediction methods have been developed, lever-
aging information available at different stages, as summarized
in TABLE 1. For instance, Guo et al. [9] developed Graph Neu-
ral Network (GNN)-based timing prediction but omitted explicit
coupling effect, preventing accurate identification of crosstalk-
critical nets for targeted optimization. Although Liang [3] and
Liu [10] incorporated neighbor-net features, their parasitic-
dependent models remain inapplicable during early routing
iterations where parasitic parameters are unavailable. Overall,
existing graph networks treat coupling effects as static node
attributes rather than dynamic edge-wise signal interactions,
while uniform message passing fails to capture divergent driver-
sink relationships. A more effective solution requires modeling
both physical proximity and timing interactions between nets.

In this work, we present ChronoTE, an edge-enhanced
hierarchical graph learning framework for crosstalk-aware
timing estimation, which can be seamlessly integrated into
routing iterations. Our model extracts both physical and timing-

TABLE I: ML-based net delay prediction methods.

Related | SLIP15 | ICCAD20 | MLCAD22 | DAC22 |ISPD25 o
urs
works [11] [3] [12] [9] [10]
45nm,
Tech 28nm 7nm 130nm 7nm 14nm
130nm
Based | ANN,
e XGboost | XGboost | GNN | GNN | GNN
model | SVM
Crosstalk | yes yes no no yes yes
Global Global
Input | Signoff | Signoff ova Placement | Signoff o.a
routing routing

related features to identify crosstalk-critical nets and predict
delay with signoft-level accuracy. Specifically, timing-window-
related features are introduced rather than directly predicting
crosstalk from wire density alone. This enables early-stage
crosstalk analysis and optimization, significantly reducing
the need for post-routing corrections and improving power,
performance, and area (PPA). The main contributions of this
work are summarized as follows:

e We propose ChronoTE, a GNN-based model for crosstalk-
aware timing estimation that models timing and topologi-
cal dependencies among coupled nets.

e We introduce a timing window mechanism to capture
the aggressor’s effect, leveraging timing-window-related
features, enabling accurate identification of crosstalk-
critical nets beyond simple wire proximity.

o We design a multi-channel edge-enhanced GNN frame-
work, combining GINEConv and GAT layers, to effec-
tively encode both physical topology and timing charac-
teristics.

« By incorporating edge features into the GNN architecture,
ChronoTE effectively captures interconnect-level interac-
tions, allowing for signoff-quality delay estimation without
requiring full parasitic extraction.

e ChronoTE can be seamlessly integrated into global routing,
enabling early-stage crosstalk prediction and mitigation,
which reduces post-routing corrections and improves PPA.

II. PRELIMINARYS
A. Timing Prediction

Crosstalk refers to the undesired electrical interference
between adjacent nets [2]. The affected net is the victim net,
while the interfering net is the aggressor net. As shown in Fig. 1,
a transition on aggressor net B can induce a delay shift (i.e.,
delta delay) on victim net C due to overlapping timing windows
and generate a voltage bump (Vyump) on net A. For the victim
net, the delta delay (AD,.;) is typically formulated as

ey

where D, g7 is the net delay measured with crosstalk effect
and D, nosr 1s the ideal, noise-free delay. Consequently,
paths containing the net B may suffer setup or hold violations
due to these transition variations.

The crosstalk effect depends on the victim’s switching state,
arrival time, and the behavior of its coupled aggressors [3]. In
timing-window-based crosstalk analysis of sign-off timers, only

Al)net = Dnet,Sl - Dnet,noSI

Aggressor Net A

R
A
h"IVCW:L—_EVW_L W »"
T T |T T |T T
Victim Net V
_b"__t"wj___t“w 1T Wi "‘
T T T T T T
(a) Equivalent circuit for crosstalk simulation
36 4 . \gvorst—gase delay 34
32 29
o i @
£281-80.2 E2 et A
2] 21
a & 14
201
et 9 v
16 4 X best-case delay
: : 4
-100 -50 0 50 100

-100 -50 0 50 100
Askew (ps)
(c) the consistent direction

Askew (ps)
(b) the opposite direction
Fig. 2: Crosstalk-induced delay analysis based on HSPICE
simulations: (a) equivalent circuit configuration for two parallel
nets; (b) signal transitions in the opposite direction; (c) signal
transitions in the same direction.

aggressors with overlapping voltage transitions are considered,
and their cumulative noise is superimposed on the victim’s
ideal waveform to estimate the worst-case delay. However, it
requires a post-routing netlist and detailed parasitic information,
making it less practical during iterative routing optimization.

B. GINEConv and GAT Description

GNN s offer a flexible and expressive framework for modeling
graph-structured data, making them well-suited for EDA tasks
where circuit netlists naturally form graphs [13] [14] [15].
In this work, we leverage two advanced GNN architectures:
Graph Attention Network (GAT) [16] and Graph Isomorphism
Network with Edge Features (GINEConv) [17], to better capture
the complex interactions in circuit graphs.

GAT introduces an attention mechanism that adaptively
learns the importance of neighboring nodes during message
passing. This enables the model to assign different weights to
neighbors, enhancing its ability to capture heterogeneous local
structures, an essential capability in circuit graphs where the
relevance of neighboring nets can vary significantly. In contrast,
GINEConv is specifically designed to incorporate edge features
into the aggregation process, making it particularly suitable
for tasks where edge attributes (e.g., coupling capacitance,
net length) carry critical information. By jointly modeling
node and edge features, GINEConv enables more expressive
representations, especially in graphs with rich edge semantics.

III. MOTIVATIONS AND PROBLEM FORMULATION

A. Motivations

To analyze the delta delay induced by aggressor activity, we
set up the experimental configuration depicted in Fig. 2(a). An
inverter Uy; drives a long interconnect, representing a potential
victim net. The victim net V' and the aggressor net A run

parallel to each other, with capacitive cross-coupling between
the two interconnects represented by the coupling capacitance
C.. The self-capacitance and resistance of the victim net are
denoted by Cy; and R, respectively. The interconnect delay is
strongly influenced by the overlap between timing windows.
The overlap between the victim and aggressor nets is quantified
by the skew of input signal arrival times, defined as

Askew = AT(OUTUll) — AT(OUTUgl) (2)

To reveal this correlation, signal transitions are first generated
at the inputs of driver cells, namely INyi; and INpo,
causing corresponding changes in D;.;4 and D,e;. The
arrival time of the input transition at INgq; is fixed at
100ps, while the arrival time at I Ny9; is swept from Ops
to 200ps, varying the input skew accordingly. Fig. 2(b)
illustrates the relationship between Askew and net delay of
nets V' and A under opposite-direction input transitions. The
results indicate that delta delay is highly sensitive to input
skew, with the worst-case delay significantly increasing when
timing windows fully overlap (Askew — 0). For instance,
a 15ps change in input skew can result in an 80.23% delay
variation for net A. Conversely, Fig. 2(c) shows the relationship
between Askew and the net delay when signal transitions
occur in the same direction. In this scenario, coupling effects
accelerate the victim transition, reducing the victim net’s delay,
corresponding to the best-case delay. This paper primarily
focuses on opposite-direction transitions, as the critical path
delays are predominantly determined by worst-case scenarios.

These experiments lead to three key observations:

o Challenge 1: Crosstalk-induced delay is highly sensitive
to the relative arrival time (Askew) between victim and
aggressor nets. The worst-case delay occurs when their
timing windows fully overlap.

o Challenge 2: Physical proximity alone is insufficient to
cause significant delay variation. Crosstalk effects only
manifest when both spatial adjacency and timing window
alignment are present.

o Challenge 3: The impact of aggressor nets varies dynam-
ically with timing skew, indicating that static modeling
of net interactions is inadequate.

These findings highlight a critical modeling requirement:
accurate crosstalk prediction must consider both physical
and timing window correlations at the net-pair level. While
prior GNN-based approaches incorporate physical and timing
features independently, they fail to capture their interaction.

B. Problem Formulation

The objective of crosstalk-aware timing prediction during
global routing is to estimate delay components for each net,
considering both intrinsic wire properties and inter-net coupling
effects, using only early-stage routing information.

Input:

o A global routing result represented as a graph G(V, E):

— Each node v; € V corresponds to a routing vertex
(e.g., pin‘, Steiner point, or junction), with feature
vector £\ € R,

— Each edge e;; € E represents a routed net segment,
with feature vector fe(”) € Re, including inherent
features and crosstalk-related features.

o Standard cell library L, Library exchange format
(LEF) Ligr and Interconnect technology file (ITF) Lirg
providing physical and timing parameters.

« Ground-truth labels y(*) = [Dret,ori, ADpet, C, Voump)
from a sign-off timer in signal integrity (SI) mode.

Output:

« For each net k, predict:

}A’(k) = fG(GIm {fn}7 {fe}) = [ﬁnei,m*h AADneh é: ‘/b'z;mp] (3)

where G, C G is the subgraph corresponding to net k.
o The predicted net delay is used in timing arc estimation:

Dnet = Dnet,om’ + ADneta de’ver = fLUT(Slewin» C) (4)

Constraints:

e Only global routing information is available; no post-
routing parasitics or detailed RC extraction.

« Crosstalk effects are inferred from physical-timing features:

— Physical: Wgs; (spacing), Lgr (parallel overlap
length), extracted from the global routing result.

— Timing: Askew (arrival time difference), derived
from PrimeTime-SI timing reports.

« All potential aggressor-victim pairs within a defined spatial
window (e.g., 50x wire widths) are included, regardless of
timing window overlap, to ensure coverage of all possible
crosstalk interactions.

Goal:

Train a prediction function fy that maps the graph-structured

input of each net Gy, to its corresponding delay components:

}A’(k) = fQ(GIm {fn}7 {fe}) = [Dnet,o'ri7 AAD'n,eh 07 ‘/b'l;'mp] (5)

The model is optimized to maximize the coefficient of
determination (R? score) between the predicted and ground-
truth delay components across all nets:

N s
R2 1 2w 3 =y ™3
- N —
D= ly® = ¥l3
where ¥y is the mean of the ground-truth delay over the dataset.

(6)

IV. CROSSTALK-AWARE TIMING PREDICTION

To address the limitations of crosstalk prediction models,
we propose ChronoTE, a novel GNN-based model capturing
aggressor-induced effects. Unlike conventional methods that
rely on post-routing parasitic parameters, ChronoTE enriches
node and edge representations with both physical and timing
features and incorporates an attention mechanism to adaptively
prioritize critical neighbors during message passing.

A. Feature Selection

During global routing, detailed RC parasitics are unavailable.
To approximate estimate timing, we adopt a Steiner-tree-based
initial routing using FastRoute [18], enabling look-ahead RC
tree construction and early estimation of driver cell delay. This
improves correlation with post-routing results.

l«— Net feature extraction —>}«—— Data representation —}« Graph neural networks—»|

-
1
H
H
H
H
.
h
.

\
a
oM -\l

2
(a) Global routing results

features
Netl segment

Coupling
area
Lsi

Net2 segment

(b) Coupling segments

[}
(]
'
[}
(]
[}
'
[}
(]
'
'
[}
(]
H Enhanced
(]
(]
'
[}
(]
]
'
[}
(]
[}
[}
.

Node matrix

________’__________-______'________o

(c) Graph representation

Fig. 3: Overview of the proposed ChronoTE framework. (a) Model input is a global routing result. (b) Interaction between two
coupling segments. (c) Transformation of routing and coupling features into a graph structure.

Node Features: Each net segment connects a driver output

to a sink. The following features are extracted:

 Driver cell delay (D iyer ori): Considering the impact
of the driver cell on the interconnect segments, the cell
delay Dgriver,ori 18 €xtracted from L using estimated
wirelength-based load capacitance.

o Driver transition (Slew;, or;): This parameter represents
the transition time of the driver output, which is crucial
for determining the delay of the driver cell. It is computed
using estimated Steiner-based parasitics, ensuring that the
derivative effects on the source-to-sink delay are captured.
A smaller driver transition generally results in a reduced
propagation delay and minimizes the signal slew, further
contributing to signal integrity.

o Coordinates (z,y, z): Spatial location of the segment. x
and y represent the starting and ending coordinates of the
segment, respectively, while z is the current layer number.

Edge Features: As shown in Fig. 3(b), to capture crosstalk

effects, we extract:

o Wirelength and Direction (W L, Dir): The wirelength
(W L) is indicative of the length of the segment, affecting
resistance and capacitance, while the direction (Dir)
provides insight into the segment’s orientation relative to
adjacent wires, which can influence the coupling effects.

o Relative Timing (Askew): Arrival time difference be-
tween victim and aggressor is extracted based on estimated
arrival time to address the reliance on arrival time of
adjacent nets (Challenge 1).

o Coupling Geometry (Ws;y, Lsr): Wgr (spacing), Lsy
(parallel overlap length) of parallel segments, extracted
from routed geometry to address the reliance on spatial
adjacency of adjacent nets (Challenge 2).

o Metal parameters (Myy, M7, My, M., Ry, Co, Ce):
The interconnect width, thickness, the permittivity
of the oxide, and the inter-layer dielectric thickness

(Mw , M7, My, M,,) extracted from ITF and the resis-

tance rpersq, capacitance cpersqdist, and edge capacitance

(Ro, Cy, C,) extracted from LEF to characterize layer-

specific physical and electrical properties, respectively.
B. Model Architecture

Fig. 3 illustrates our hierarchical graph neural network
framework for timing prediction, structured around three
fundamental components:

1. Enhanced Edge Feature Integration: Traditional graph-
based methods often neglect the concurrent physical and timing
interactions between adjacent nets. To address this limitation,
our model explicitly incorporates statistical crosstalk features
derived from multiple aggressors, thereby enabling a precise
characterization of crosstalk effects. For each victim net, we
compute the following aggregated statistics from the coupling
metrics (i.e., Wgy, Lgy, and Askew) of all aggressors:

o Number of Aggressors (N,,): The total count of

aggressor segments interacting with the victim net.

e Mean Coupling Metrics (Ws;, Lg;, Askew): The
average coupling width, coupling length, and timing skew
computed over all aggressors.

o Timing-Critical Distance (d.,;;): The distance from the
driver to the center of the maximum overlap region, which
identifies the most timing-sensitive spatial relationship.

These statistical features are derived from the set of individual
aggressor metrics and subsequently undergo dimensional ex-
pansion via an edge multi-layer perceptron (MLP). Specifically,
the enhanced edge feature is computed as:

J1 = MUPeage (Wi | Lss || Askew])

@)

where || denotes feature concatenation. This approach facilitates
coupling analysis that is sensitive to timing windows even when
post-routing data is unavailable, by embedding these enriched
statistics into the edge attributes, thereby enhancing the capture
of the timing impact of aggressor-victim interactions.

2. Heterogeneous Feature Fusion with Attention Guid-
ance: To dynamically model the complex interactions between
adjacent nets (Challenge 3), we adopt a hybrid message
passing architecture that combines Graph Attention Networks
(GAT) and Graph Isomorphism Networks with Edge features
(GINEConv). This design enables the model to simultaneously
capture node-centric timing dependencies and edge-centric
crosstalk effects.

GAT for Timing-Critical Neighbor Prioritization: In crosstalk
scenarios, not all neighboring nets contribute equally to delay
variation—only those with overlapping timing windows and
strong coupling are impactful. To address this, we employ
GAT layers to learn adaptive attention weights that reflect the
relative importance of each neighbor. The attention coefficient
between node ¢ and j is computed as:

_ exp(LeakyReLU(a” [W f,; W fnil)
B > ken (i) exp(LeakyReLU(aT [W fri W fur]))

This mechanism allows the model to focus on timing-critical
aggressors, effectively filtering out irrelevant neighbors that
are physically close but timing window misaligned. This is
particularly aligned with our SPICE-based observation that
crosstalk occurs only when both spatial and timing window
conditions are met. By learning to prioritize neighbors with both
physical proximity and timing overlap, the attention mechanism
enhances the model’s ability to capture realistic crosstalk-
induced delay variations.

GINEConv for Edge-Aware Message Passing: While GAT
emphasizes node-level attention, it lacks the ability to directly
incorporate rich edge attributes. To complement this, we
integrate GINEConv layers, which support edge-conditioned
message passing. This is particularly important in our setting,
where edge features such as Askew, Wy, and Lg; dominate
the delay behavior. The GINEConv update rule is defined as:

BV =00 (b + 3,y ReLUMY +e;)) (9)

This formulation enables the model to learn fine-grained inter-
actions between victim and aggressor segments, conditioned
on both spatial and timing coupling features.

®)

Qg

Dual-Branch Architecture: To fully exploit the complemen-
tary strengths of GAT and GINEConv, we adopt a dual-branch
architecture:

o GAT Branch: Processes node features f,, to capture net-
level timing dependencies and prioritize critical neighbors.

o GINEConv Branch: Processes edge features f. to model
segment-level crosstalk interactions with high fidelity.

The outputs of both branches are fused in subsequent layers to
form a unified representation for downstream delay prediction.

3. Multi-Level Aggregation: The architecture employs three
progressive learning stages:

1) Local Interaction Layer: GINEConv blocks extract
segment-level coupling patterns

2) Global Attention Layer: Multi-head GAT (3 heads) learns
net-level timing dependencies

© Input circuit graph (routed) ® Timing estimation

Level i-1 Level i Level i+ Path: |netl|t;:~:\|l|net2|cell2| . |ce|ln|netn|
P T T
: : Dc : : Doi celll net2
N :] : vl Y gmeeeeeseay n
E ran ‘:N - E : E b i 4-6 Qgery cell's Slewm Features
S oy LT
E ‘ N P | : Net

[Dretor 4- prediction
{[] ADne | _model

Fig. 4: Timing arc delay propagation using predicted net delay.

3) Hierarchical Pooling: Combines edge-wise mean pooling
and node-wise max pooling:

ha = MLPreadout <{maxpool(hq,) ||meanpool fé)}) (10)
veV ecE

This design philosophy achieves 38% higher feature expres-
siveness than conventional GCN-based approaches, as verified
in our ablation studies (Section V-B). The final MLP predictor
uses residual connections to map graph embeddings to timing
metrics:

[Dnet,ori7 ADneta C7 %ump] = MLPOul(hG) + h(GO) (1 1)

preserving both raw physical characteristics and learned timing
relationships.

Loss Function: The model is trained using the mean squared
error (MSE) loss between the predicted and ground-truth delay
components:

2
g®) _ 3 H
2

| X
EMSE:NZ

12)
where y(*) and y*) denote the predicted and ground-truth
delay vectors for net k, respectively. During evaluation, we
report the coefficient of determination (R? score) to measure
the prediction accuracy.

C. Timing Arc Delay Estimation

In our implementation, the inference results from the trained
timing model are integrated into OpenSTA [19] for path delay
computation. As shown in Fig. 4, a unit operation in timing
analysis is the process of estimating the delay of a single logic
stage, consisting of a driver cell and its fanout net. The net
delay is modeled as

Dnet = Dnet,om’ + A-D'rLet (13)

consisting of both the crosstalk-induced delay AD,,.; and the
original net delay Dpet, ori-

Given the estimated capacitance C' at the output of the driver
cell, and the transition time Slew;, at the cell input, the cell
delay is expressed via a lookup table (LUT) as

Ddrive’r = fLUT(Slewin7 C)

For an intermediate pair of (Slew;,,C) values that does not
directly map to a LUT entry, the delay is computed using
interpolation. The gate output transition is estimated similarly
using the same axes as the gate delay LUTs. Finally, the overall
path arrival time is composed of the delays of individual stages.

(14)

TABLE II: Experiment benchmarks.

Benchmarks #Nets #Cells #FFs Area
(um?)
sasc 429 409 124 246
usb_phy 661 644 98 323
simple_spi 1038 1019 116 348
des_area 1656 1528 64 587
systemcaes 5247 4981 670 2067
ac97_ctrl 7280 7145 2229 3458
Train | tv80 8935 8911 359 2175
aes_core 10455 10169 530 3056
xtea 10748 10232 262 2967
wb_dma 39403 39050 718 7509
des3_perf 50101 50337 8808 34436
vga_lcd 55228 55030 17071 26316
jpeg_encoder 349822 279992 39583 131780
pci 674 505 136 282
spi 1339 1274 229 733
systemcdes 1575 1441 190 567
Test mem_ctrl 5044 4884 1126 4043
usb_funct 9737 9345 1746 6546
ethernet 36081 36352 10544 33139
wb_conmax 61428 60295 818 18322
Total train 541003 469447 70632 215275
Total Test 115878 114096 14789 63634

V. EXPERIMENTAL RESULTS

The proposed approach is implemented in Python 3.7.11
and trained with PyTorch 1.12 using four NVIDIA Tesla V100
PCle 32GB GPUs, and then evaluated on a Linux machine
with an Intel Xeon Silver 4214 CPU (@2.20GHz) and 252GB
DDRS5 memory.

A. Dataset Preparation

The experiments are conducted on 20 designs from the real-
world open-source OpenCores benchmarks [20] with 14nm
technology. The benchmark information is summarized in TA-
BLE II. The input data comprises both the physical features
and the timing characteristics of the current interconnect.
For training data generation, the process begins with logic
synthesis using Design Compiler [21], followed by placement
with IC Compiler II (ICC2) [22]. The input node features
fn = (Ddriver,om'a Slewin,ori7 z,Y, Z) and fe = (WLa DZT)
are extracted from an initial global routing solution gener-
ated by the open-source FastRoute engine [18]. Furthermore,
fe =My, My, My, Mcg) are extracted from the ITF file, and
fe =(Ry, Cy, C,) are extracted from the LEF file.

To derive the accurate predicted outputs f, = (Dpet,ori,
ADyet, C, Voymp), we complete the implementation flow us-
ing commercial EDA tools, including detailed routing with
ICC2, parasitic extraction with StarRC, and sign-off timing
analysis with PrimeTime-SI. The values of f, are extracted
directly from the PrimeTime-SI logs, which record both the
locations of crosstalk nets and the corresponding delta delay
values. PrimeTime-SI supports multiple analysis modes for
evaluating timing window overlaps; in this work, we adopt the
“all_path_edges” mode, which independently analyzes early
and late arrival times along the victim path. The resulting delta

. 2 [
S 368 R 63.25% tonger 3.95msE
o prepare time s
8 30 better predict 3 §
'-g 24 accuracy §
= @
=% 2
>18 g
- S
L2

E g
T 6 2. 0, k]
8 . > R*: 99.93% 8

0

10 20 30 40 50 60 70
Ratio of window width to wirewidth

(a) Window width

Fig. 5: Trade-off between aggressor search window and model
accuracy.

(b) Extraction time tradeoff

delay reflects the worst-case impact of all aggressor nets on
the victim net.

In constructing the dataset, it is essential to define a
constrained search range for identifying parallel interconnect
segments that contribute to crosstalk. As illustrated in Fig. 3
(b), the coupling region is characterized by the parallel overlap
length (Lgy) and the inter-segment spacing (Wgsy), which
are extracted from the routed design and used to construct
enhanced edge features in the graph representation. The number
of potential aggressors is proportional to the search range
employed. To ensure computational efficiency and physical
relevance, we apply spatial constraints as shown in Fig. 5. Only
segments within a maximum separation distance are included.
Experimental analysis of coupling decay identifies 35x wire
widths as the optimal spatial window. This setting achieves a
favorable trade-off between signal integrity modeling fidelity
and computational cost, avoiding false negatives from narrow
windows and non-physical couplings from overly wide ones.

B. Parameter Selection

For the parameter selection of our prediction model (Lq:
GINEConv layer, Ly: GAT layer), five distinct configurations
are used for evaluation: PlanA (L,=5, L»=0), PlanB (L=0,
Lo=5), PlanC (L1=3, Ly=5), PlanD (L1=5, L>=3) and PlanE
(L1=5, Ly=5). We train our model in each plan with a
dynamically adjusted learning rate starting from 0.01 to 0.006
and a batch size of 128 over 150 epochs. This schedule
achieves stable convergence while preventing overshooting
in later training stages. The prediction accuracy R? score for
each configuration is shown in TABLE III. The GINEConv-
GAT synergy provides higher precision than single-GINEConv
(planA) and single-GAT (planB), validating our co-design
methodology. Better generalization is demonstrated with PlanE,
so it is chosen as the default configuration for wire delay
prediction. A 5-layer GINEConv stack (32 hidden dimensions)
extracts hierarchical node features from the circuit graph, while
a complementary 5-layer GAT module (64 hidden dimensions)
processes edge relationships through attention mechanisms.

C. Prediction Performance Analysis

TABLE IV compares the net-level prediction accuracy
of XGBoost [3], GNNTimer [9], GraphCAD [10], and our
edge-enhanced GNN model. The baseline is defined as the
PrimeTime-SI results obtained after complete routing and
parasitic extraction. During the evaluation, the features used

TABLE III: Performance comparison of GNN configurations.

Prediction accuracy (R? score)

C Dnet,ori ADnet Vbump

Train Test Train Test Train Test Train Test

PlanA
PlanB
PlanC
PlanD
PlanE

0.8963
0.9265
0.9768
0.9997
0.9985

0.8529
0.8958
0.9685
0.9957
0.9958

0.8652
0.9325
0.9587
0.9968
0.9958

0.8475
0.9014
0.9886
0.9981
0.9986

0.8765
0.8554
0.9875
0.9957
0.9968

0.8584
0.8397
0.9648
0.9967
0.9985

0.8356
0.8256
0.9256
0.9611
0.9865

0.8265
0.8446
0.9584
0.9684
0.9784

by XGBoost, GNNTimer, and GraphCAD are adopted, and
the same prediction methodology as our model is applied,
excluding timing-window-related features. The results indicate
that both XGBoost and GNNTimer exhibit relatively low
accuracy, which appears to be heavily impacted by the
absence of timing-window-related features, which are crucial
for capturing crosstalk effects that occur only when both
spatial proximity and timing overlap conditions are met. In
contrast, our proposed model leverages these features to achieve
predictions closely aligned with post-routing timing results.

To validate the path-level accuracy, TABLE V presents the
prediction errors of WNS and TNS. The results indicate that
both XGBoost and GNNTimer exhibit limited accuracy when
RC parameters are unavailable. GNNTimer, specializing in
end-to-end predictions, achieves higher accuracy in predicting
WNS and TNS compared to XGBoost. Conversely, XGBoost
is more suitable for predicting individual net-level crosstalk
delay, thus slightly outperforming GNNTimer in the net-level
delay predictions shown in TABLE IV. GraphCAD significantly
improves prediction accuracy by leveraging accurate parasitic
parameter information. Nevertheless, since such parasitic
information is only available after full routing and extraction,
GraphCAD cannot provide early-stage guidance during the
routing process. In contrast, our proposed model achieves delay
predictions closely aligned with post-routing timing results
without relying on parasitic parameter files, highlighting its
practical advantage in early-stage timing prediction.

D. Efficiency and Scalability Analysis

To evaluate the efficiency of our proposed approach, TA-
BLE V provides a comparative analysis of runtime among the
baseline (which includes complete routing, parasitic extrac-
tion, and STA), XGBoost, GNNTimer, GraphCAD, and ours.
All ML-based approaches demonstrate significantly reduced
runtimes compared to the baseline. Specifically, XGBoost and
GNNTimer achieve rapid execution speeds due to their reliance
solely on placement results, thereby eliminating the need for
routing and substantially reducing data preparation time.

In contrast, GraphCAD requires the completion of parasitic
parameter extraction prior to prediction, resulting in longer data
preparation times and thus less favorable runtime performance.
Our proposed model, which necessitates only an initial global
routing solution, effectively balances agility and accuracy. By
leveraging timing-window-related features and the physical

(a) Without our model

(b) With our model

Fig. 6: Comparison of the crosstalk-induced delay distribution
with and without the embedding of our model.

information of nets, our model achieves crosstalk delay predic-
tions that closely match signoff-level accuracy, yielding results
comparable to those of GraphCAD. This advantage becomes
particularly pronounced in large-scale circuit scenarios, as
shown in TABLE V, where XGBoost and GNNTimer exhibit
notably increased prediction errors, and GraphCAD experiences
significantly prolonged data preparation times. Consequently,
our approach demonstrates clear superiority in terms of both
runtime efficiency and prediction accuracy, especially when
applied to large-scale circuits.

VI. CASE STUDY ON AES_CORE BENCHMARK

To validate the efficiency of our crosstalk-aware timing
prediction model, we conducted comparative analyses using
two distinct schemes applied to the same design (aes_core).
The evaluation workflow comprises four sequential phases:
(1) global routing; (2) GNN-model-guided crosstalk net iden-
tification; (3) crosstalk net optimization; and (4) detailed
routing, parasitic extraction, and signoff timing analysis. The
experimental pipeline (phases 1-3) initiates with an initial
global routing solution generated by FastRoute [18]. Following
crosstalk optimization, phase 4 completes the implementation
flow using commercial EDA tools: detailed routing via ICC2,
parasitic extraction via StarRC, and sign-off timing verification
via PrimeTime-SI. For consistency, phase 4 employs a fixed
10-round iteration, which was empirically chosen to balance
convergence and runtime. Then proceed with the detailed
description of Scheme 1 and Scheme 2.

o Scheme 1 (Fixed Utilization Crosstalk Optimization):
Maintains constant routing density at 70% to prioritize
crosstalk mitigation.

o Scheme 2 (Density-Scalable Timing-Driven Implemen-
tation): Begins with 50% routing density and iteratively
compresses layout until reaching either Design Rule Check
(DRC) violations or timing margin exhaustion.

As shown in TABLE VI, both Scheme 1 and Scheme 2 are
implemented using our full flow, which integrates the proposed
crosstalk-aware timing prediction model into the global routing.
Compared to the baseline FastRoute-only implementation,
Scheme 1 achieve improvements: 80.9% average reduction in

TABLE 1V: Prediction accuracy (R? score) of different models compared to PrimeTime-SI results.

Wire capacitance C' (%)

No-crosstalk delay Dy et,0ri (%) ‘ Crosstalk-induced delay AD,, et (%) ‘Crosstalk—induced worst bump Vi mp (%)

Benchmarks XGBoost GNNTimer GraphCAD XGBoost GNNTimer GraphCAD XGBoost GNNTimer GraphCAD XGBoost GNNTimer GraphCAD

Ours Ours Ours Ours
[3] [91 [10] [3] [91 [10] [3] [91 [10] [3] [91 [10]

pci 83.42 78.65 99.12 98.87| 81.76 84.93 99.45 9892 7534 58.12 98.38 98.36| 85.67 86.56 99.67 98.26
spi 81.27 76.88 98.84 98.45| 79.63 81.12 99.13 98.74| 7291 54.67 98.92 98.89| 82.98 78.67 99.45 99.01
systemcdes| 80.94 70.45 98.67 98.13| 82.34 69.78 98.89 98.42| 73.56 49.23 98.45 98.41| 86.67 85.67 98.45 99.02
mem_ctrl 85.63 79.34 98.23 97.87| 80.12 75.45 98.56 98.34| 76.89 59.12 97.78 97.76| 92.56 69.56 99.02 99.21
usb_funct | 79.45 75.89 97.34 96.87| 76.78 73.56 97.45 97.12| 69.87 51.34 96.92 96.91| 88.56 78.98 97.46 98.34
ethernet | 77.12 71.23 96.45 96.12| 73.45 69.87 96.67 96.45| 67.34 43.56 96.45 96.44| 89.45 72.97 97.24 97.27
wb_conmax | 75.89 69.78 95.78 95.45| 71.23 67.89 95.34 95.12| 65.12 39.87 95.56 95.55| 90.45 85.31 98.11 97.67
Average ‘ 80.53 74.60 97.92 97.54‘ 77.47 74.37 97.93 97.59‘ 71.15 50.27 97.78 97.77 ‘ 88.05 79.67 98.49 98.40

TABLE V: Comparison on time prediction performance (WNS and TNS) and runtime. Note: The baseline runtime includes
routing, RC extraction, and STA; in contrast, XGBoost and GNNTimer only perform the prediction step, GraphCAD conducts
routing and RC extraction prior to prediction, and our work conducts global routing and the prediction step.

‘ Errors of WNS (%) ‘

Errors of TNS (%) ‘

Runtime (s)

Benehmarks 1 GBoost GNNTimer GraphCAD Ours | XGBoost GNNTimer GraphCAD) | Baseline XGBoost GNNTimer GraphCAD
[3] [9] [10] [3] [9] [10] [8] [3] [9] [10]
pci 2054 19.36 521 308 | 1889 20.42 485 343 | 605 1.42 0.52 5.02 1.94
spi 23.69 2135 403 453 | 2179 18.56 413 441 | 7178 1.82 0.58 436 2.30
systemcdes | 1641 18.52 535 482 | 1858 19.63 520 437 | 2556 198 0.66 1936 2.56
mem_ctrl | 1874 19.64 416 331 | 16585 17.36 498 385 | 3299 181 0.97 2135 361
usb_funct | 17.17 16.58 318 355 | 1549 17.25 286 493 | 59.85 1.95 1.28 5023 672
cthernet | 22.63 19.35 342 376 | 1771 16.85 305 412 | 18923 134 1.49 17245 1507
wb_conmax | 27.70 2235 320 321 | 2009 16.37 257 296 | 21963 256 2.03 20135 2236
Average 20.98 19.59 423 375 | 1849 18.06 395 401 | 7729 184 1.07 6173 179
Speedup (x) - - - - - - - - 100 4202x 72.24x L14x 9.92x

TABLE VI: Post-implementation results of aes_core with
and without crosstalk-aware optimization.

FastRoute Only FastRoute + our Model (Full Flow)

Metric
No Optimization Scheme 1 Scheme 2
Chip area (um?) 4968 4968 4322
Cell area (um?) 4195 4195 3478 (17%)
Frequency (MHz) 468 562 (28%) 557 (19%)
WNS (ns) -0.83 -0.65 (21%) -0.64 (23%)
TNS (ns) -192.3 -146.9 (24%) -186.6 (3%)
Total delta delay (ns) 4.93 0.94 (81%) 3.57 (27%)
Wirelength (m) 0.318 0.314 0.435
Total power (mW) 4.68 4.63 4.92
Total runtime (s) 42.68 8.60 40.63

crosstalk delay, 21.7% improvement in WNS, and 1.2 % power
benefit (Pt = FPayn + Pyta). Crosstalk mitigation inherently
necessitates wire routing adjustments, resulting in a slight
increase in the overall design wire length as an optimization
cost. Fig. 6 illustrates the crosstalk delay distribution before
and after optimization, with an inset detailing the statistical
count of nets exhibiting significant crosstalk delay. Specifically,
red indicates nets with high delta delay, while blue and white
represent nets with successively lower crosstalk delay. The blue
and white regions denote nets with relatively minor crosstalk
delay. Our crosstalk-aware timing prediction model identifies
crosstalk-sensitive nets and guides the router to optimize
those nets. The number of nets severely affected by crosstalk

decreased from 1476 to 227.

In Scheme 2, with a final core utilization 85%, aes_core
can realize significant 17% area reduction and 19% improve-
ment in frequency, as shown in TABLE VI. The increase in
wirelength and power consumption is negligible in comparison
to the benefit to the area. This case study confirms that
our model effectively guides routing engines to prioritize
signal integrity constraints without compromising routability
or runtime efficiency.

VII. CONCLUSION

In this paper, we presented ChronoTE, an innovative edge-
enhanced graph neural network for crosstalk-aware timing
estimation. By integrating physical topology with timing-
window-related features, ChronoTE achieves signoff-quality
predictions in global routing without requiring full routing or
parasitic extraction. Experiments demonstrate reduced post-
routing corrections and enhanced PPA metrics. Future work
will explore further optimizations and dynamic parameter
integration to enhance scalability and prediction fidelity for
advanced VLSI design closure.

VIII. ACKNOWLEDGMENTS

The research work described in this paper was conducted in
the JC STEM Lab of Intelligent Design Automation funded
by The Hong Kong Jockey Club Charities Trust. This work
is jointly supported by the Research Grants Council of Hong
Kong SAR (No. CUHK14211324).

[1]

[2

—

[5

=

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

M. Brunion, A. Sharma, G. Mirabelli, D. Abdi, Y. Zhou, H. Kiikner,
O. Zografos, F. G. Redondo, D. Biswas, G. Hellings, J. Ryckaert, and
J. Myers, “System technology co-optimization of cost-bandwidth tradeoffs
in network on chip through 3D integration and backside signals,” in
IEEE International Electron Devices Meeting (IEDM), pp. 1-4, 2024.
V. A. Chhabria, B. Keller, Y. Zhang, S. Vollala, S. Pratty, H. Ren, and
B. Khailany, “XT-PRAGGMA: Crosstalk pessimism reduction achieved
with GPU gate-level simulations and machine learning,” in ACM/IEEE
Workshop on Machine Learning CAD (MLCAD), pp. 63-69, 2022.

R. Liang, Z. Xie, J. Jung, and et al., “Routing-free crosstalk prediction,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 1-9, 2020.

M. S. H. Omshi, R. F. Mirzaee, A. Reza, and M. Mirzaei, “Low-power
bus encoding by ternary LWC and quaternary transition signaling: From
initial concept to circuit design,” IEEE Transactions on Very Large Scale
Integration Systems (TVLSI), vol. 32, no. 4, pp. 682-694, 2023.

V. Huang, D. Shim, H. Simka, and A. Naeemi, “From interconnect
materials and processes to chip level performance: Modeling and design
for conventional and exploratory concepts,” in [EEE International
Electron Devices Meeting (IEDM), pp. 32.6.1-32.6.4, 2020.

D. Wu, J. Hu, R. Mahapatra, and M. Zhao, “Layer assignment for
crosstalk risk minimization,” in IEEE/ACM Asia and South Pacific Design
Automation Conference (ASPDAC), pp. 159-162, 2004.

J. Liu, C.-W. Pui, F. Wang, and E. F. Y. Young, “CUGR: Detailed-
routability-driven 3D global routing with probabilistic resource model,”
in ACM/IEEE Design Automation Conference (DAC), pp. 1-6, 2020.
“PrimeTime SI: Crosstalk delay and noise.,” 2022. https://www.synopsys.
com/implementation-and-signoff/signoft/primetime.html/.

Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine
inspired graph neural network model for pre-routing slack prediction,” in
ACM/IEEE Design Automation Conference (DAC), p. 1207-1212, 2022.
F. Liu, G. Guo, Y. Ye, Z. Wang, W. Fu, W. Sheng, and B. Yu, “GraphCAD:
Leveraging graph neural networks for accuracy prediction handling
crosstalk-affected delays,” in ACM International Symposium on Physical
Design (ISPD), p. 125-133, 2025.

A. B. Kahng, M. Luo, and S. Nath, “SI for free: machine learning of
interconnect coupling delay and transition effects,” in ACM Workshop
on System Level Interconnect Prediction (SLIP), pp. 1-8, 2015.

V. A. Chhabria, W. Jiang, A. B. Kahng, and S. S. Sapatnekar, “From
global route to detailed route: ML for fast and accurate wire parasitics
and timing prediction,” in ACM/IEEE Workshop on Machine Learning
CAD (MLCAD), pp. 7-14, 2022.

H. Ren, S. Nath, Y. Zhang, H. Chen, and M. Liu, “Why are graph
neural networks effective for eda problems?,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 1-8, 2022.

A. Ghose, V. Zhang, Y. Zhang, D. Li, W. Liu, and M. Coates, “Gen-
eralizable cross-graph embedding for gnn-based congestion prediction,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 1-9, 2021.

B. Onal, E. Dogan, M. H. Khan, and M. R. Guthaus, “GAT-Steiner:
Rectilinear steiner minimal tree prediction using GNNs,” in I[EEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2024.
P. Velickovié, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” in International Conference
on Learning Representations (ICLR), 2018.

W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec,
“Strategies for pre-training graph neural networks,” in International
Conference on Learning Representations (ICLR), 2020.

Y. Xu, Y. Zhang, and C. Chu, “Fastroute 4.0: Global router with
efficient via minimization,” in IEEE/ACM Asia and South Pacific Design
Automation Conference (ASPDAC), pp. 576-581, 2009.

T. Ajayi, V. A. Chhabria, M. Fogaca, and et al., “Toward an open-source
digital flow: First learnings from the OpenROAD project,” in ACM/IEEE
Design Automation Conference (DAC), 2019.

“OpenCores.,” 2021. https://opencores.org/.

“Synopsys design compiler user guide,” 2022. Guide,http://www.
Synopsys.com.

“Synopsys IC. compiler II user guide.,” 2022. Guide,http://www.synopsys.
com.

https://www.synopsys. com/implementation-and-signoff/signoff/primetime.html/
https://www.synopsys. com/implementation-and-signoff/signoff/primetime.html/
https://opencores.org/
Guide, http://www.synopsys.com
Guide, http://www.synopsys.com
Guide, http://www.synopsys.com
Guide, http://www.synopsys.com

