NUA-Timer: Pre-Synthesis Timing Prediction Under
Non-Uniform Input Arrival Times

Ziyi Wang!, Fangzhou Liu!,

Abstract—Accurate and swift pre-synthesis timing estimation is cru-
cial for early-stage timing optimization and design space exploration.
Recent advances in machine learning have shown significant promise in
improving pre-synthesis timing prediction accuracy. However, existing
learning-driven methods have overlooked the complexities introduced
by the trending hierarchical design paradigm, specifically non-uniform
input arrival times (NUIAT). In this paper, we present NUA-Timer, a
novel pre-synthesis timing prediction framework designed to address the
unique challenges posed by NUIAT in hierarchical timing prediction.
To capture the complex long-range timing dependencies under varying
NUIAT, NUA-Timer employs a novel bidirectional propagation neural
network (BPN), which enables the quantification of timing dependencies
using a correlation matrix. Furthermore, we introduce a tailored loss
function that leverages post-synthesis critical path labels, thereby aligning
the correlation matrix with actual post-synthesis timing dependencies.
Comprehensive experiments on both synthetic and open-source designs
demonstrate the superiority of our method compared to the state-of-the-
art (SOTA) pre-synthesis timing evaluators.

I. INTRODUCTION

Logic synthesis is a crucial phase in the electronic design automa-
tion (EDA) flow, where high-level descriptions are transformed into
netlists that can be implemented on integrated circuits. One of the
primary challenges in this phase is optimizing the timing performance
of the circuits. Traditional approaches rely on post-synthesis analysis
to refine timing, which is costly as it requires repetitive efforts. To
mitigate this issue, there is a growing emphasis on integrating pre-
synthesis timing evaluation techniques, which estimate post-synthesis
timing metrics before the synthesis process. This enables rapid
feedback and facilitates early timing optimization within the design
cycle [1].

As integrated circuits continue to grow in size and complexity, the
EDA paradigm is shifting from flat to hierarchical design [2]. In this
hierarchical approach, a circuit is segmented into multiple blocks at
various levels, as illustrated in Fig. 1. Different blocks undergo paral-
lel optimization before integration, enabling more manageable design
complexity and facilitating reuse and maintainability. However, this
shift introduces new challenges for pre-synthesis timing prediction.
When evaluating the timing performance of a specific block, such as
an intellectual property (IP) block, the unknown application context
makes fixed input arrival time assumptions unreliable [3]. In fact,
arrival times often differ across input ports, a condition termed non-
uniform input arrival times (NUIAT). As illustrated in Fig. 1, this
arises because input signals propagate through different upstream
paths, experiencing varying delays.

Recent advances in machine learning have shown significant po-
tential in improving pre-synthesis timing prediction [4]-[7]. These
works initiate the process by transforming the register transfer
level (RTL) circuit into an intermediate graph format. Following
this transformation, they conduct either path-based prediction with
feature engineering [4], [5] or graph-based analysis using graph
neural networks (GNN) [6], [7]. Despite these advancements, a
common limitation among existing learning-driven methods is their
foundational assumption that all input signals have zero initial arrival

Tsung-Yi Ho!,
!The Chinese University of Hong Kong

David Z. Pan2, Bei Yu!
2The University of Texas at Austin

Extracting
cross-block paths

Q

g
g 8 1 P [0}
E—F‘T’al : ~—]Té‘l?
%E : R, : R,
= S I ’

g T4 2k a .

= CK

Fig. 1 Illustration of hierarchical timing analysis, which focuses on
timing paths across blocks and considers non-uniform input arrival
times.

time. This assumption is problematic in hierarchical designs, where
upstream delays and interconnect effects cause significant variations
in input arrival times.

Variations in input arrival times can cause fluctuations in the
distribution of pre-synthesis critical paths, directly impacting the
synthesis process and the post-synthesis timing characteristics. As
shown in Fig. 2, post-synthesis critical paths may vary with different
input arrival time conditions. Accurately capturing the post-synthesis
critical path distribution is crucial to effectively evaluating post-
synthesis timing. However, the dynamic nature of input arrival
times and complex circuit dependencies make this challenging. We
summarize two unique challenges below.

Firstly, accurately annotating post-synthesis critical paths on the
pre-synthesis circuit is challenging due to the lack of a one-to-
one mapping between pre- and post-synthesis circuit components.
Existing methods either overlook critical path information [6], [7] or
depend on pre-synthesis critical paths [4], [5], which often diverge
substantially from post-synthesis critical paths. For instance, the
startpoint of a pre-synthesis critical path for an endpoint may be
a don’t-care term to the endpoint, as shown in Fig. 2. Consequently,
predictions based on such pre-synthesis critical paths may result in
considerable errors.

Secondly, it requires the ability to effectively capture the long-
range dependencies between circuit inputs and outputs, which remains
a hurdle for existing graph learning methods. Traditional message
passing neural networks (MPNNs) [8], [9] are constrained by their
localized aggregation scheme, which inherently limits their capability
to learn long-range dependencies. While Graph Transformers [10]-
[12] are adept at capturing global information within graphs, they lack
explicit mechanisms to identify and prioritize critical paths, which is
crucial for timing prediction. The inability to accurately model long-
range timing dependencies limits the effectiveness of current graph-
based timing prediction methods.

(a)

(b)

Fig. 2 An example to show how post-synthesis critical paths can differ from pre-synthesis critical paths and may vary with different non-uniform
input arrival times (NUIATs). Here, the input I is a don’t care term of endpoint E. (a) highlights pre-synthesis critical paths, each color per
a specific NUIAT scenario. (b) and (c) display the resulting post-synthesis netlists and critical paths under two distinct NUIAT conditions.

To address these challenges, we introduce NUA-Timer, a pre-
synthesis timing prediction framework specifically designed for non-
uniform input arrival times. We propose a novel bidirectional propa-
gation neural network (BPN) to effectively capture the long-range
timing dependencies for each endpoint. This capability is crucial
for understanding and predicting the intricate dynamics of circuit
behavior under varying input conditions. To enhance the accuracy of
our framework, we have also designed a unique loss function that
directly leverages post-synthesis critical path information, thereby
enabling the BPN model to adaptively capture the distribution of
critical paths as input arrival times change.

The major contributions of this paper are listed as follows:

o We introduce a novel Bidirectional Propagation Neural Network
that enables the quantification of the long-range timing depen-
dencies associated with each endpoint.

« We develop a global path embedding method that captures post-
synthesis critical path information, enabling more accurate pre-
synthesis timing prediction.

o We design a customized loss function, using pairwise annotation
of post-synthesis critical paths, that guides the BPN to accurately
model the relationship between input arrival times and post-
synthesis timing behavior.

« We conduct comprehensive experiments on both synthetic and
open-source designs to demonstrate the superiority of our
proposed method over previous state-of-the-art (SOTA) pre-
synthesis timing prediction methods.

The rest of the paper is organized as follows: Section II introduces
the problem definition and the background of hierarchical timing anal-
ysis, Graph Neural Networks, and pre-synthesis timing prediction.
Section III overviews our proposed framework. Section IV details
our methods, including aspects such as the preprocessing process,
the Bidirectional Propagation Neural Network, and the customized
loss function. Section V presents experimental results, followed by
the conclusion in Section VI

II. PRELIMINARIES
A. Hierarchical Timing Analysis

As design evolution continues, there is a notable escalation in the
size and complexity of designs. To effectively manage this growth
and bridge the productivity gap, key strategies such as IP reuse and
hierarchical design have become essential [13]. Hierarchical partition-
ing allows for the decomposition of large-scale integration designs
into smaller, manageable blocks. These blocks, often consisting of
duplicated IPs, can be developed in parallel, significantly enhancing
design efficiency.

In the realm of chip design, static timing analysis (STA) is crucial
as it has a direct influence on the design cycle time. As chip designs

become increasingly complex and expansive, conducting a full-chip
flat timing analysis has become a burdensome task, both in terms of
time and resources consumed. In response to this challenge, the EDA
industry is shifting towards hierarchical timing analysis in alignment
with the trend of hierarchical design [2], [13]-[16].

As shown in Fig. 1, hierarchical timing analysis primarily concen-
trates on timing paths that cross hierarchical boundaries while paying
less attention to those confined within individual blocks. It usually
begins by extracting the cross-block timing paths, forming a reduced
circuit design. The arrival time at an output of a block is determined
by the arrival times at all the correlated inputs of the block and the
maximum delays from all the correlated inputs to the output. When
characterizing the timing model of a block, especially an IP block,
the application context is unknown [3]. Consequently, it is prudent
to avoid making assumptions about the arrival times at the inputs.
This highlights the critical need for accurate timing estimation under
non-uniform input arrival times.

B. Pre-Synthesis Timing Prediction

In recent years, machine learning methods have been introduced
to enable early timing predictions throughout the design flow, from
logic synthesis [4]—[7] to physical design [17]-[26] stages. In partic-
ular, pre-synthesis timing prediction aims to estimate post-synthesis
timing metrics before the logic synthesis stage, allowing for early
optimization and reducing the need for iterative design refinements.
Existing methodologies can be divided into two distinct categories:
path-based [4], [5] and graph-based approaches [6], [7]. Initially,
both approaches convert the RTL design into a detailed bit-level
graph representation, such as an and-inverter-graph (AIG). This
transformation is crucial as it facilitates an intermediate transition
from the RTL design to the post-synthesis netlist, thereby bridging the
gap between these two stages. Subsequently, different methodologies
are employed to extract features for timing endpoints.

In path-based methods [4], [5], the process begins with the extrac-
tion of pre-synthesis paths for each timing endpoint from the built
graph. For instance, MasterRTL [4] focuses on identifying a single
critical pre-synthesis path for each endpoint, whereas RTL-Timer [5]
incorporates additional random paths to enhance the robustness of the
analysis. Following path extraction, these methods employ extensive
feature engineering to meticulously select key features from these
paths, which are instrumental in making precise timing predictions.
However, the path-based methods may suffer from performance
degradation when the pre-synthesis critical path distribution does not
align with the post-synthesis one.

Conversely, graph-based methods [6], [7] concentrate on capturing
the structural information embedded within the fan-in cone of each
endpoint. Specifically, LSTP [7] utilizes a specialized asynchronous
GNN that processes the graph in a topological order. This approach

RTL Design i Pre(/i;::ievilE ,1.135 :mt
input [7:0] I1; E

output [7:0] O1;
reg [7:0] R1;
wire [7:0] W1;

assign W1 =11 & R1;

Estimated Timing
Correlation Matrix

Critical Path
|t
Fig. 3 Overview of NUA-Timer, where FTE and GPE represent
forward timing embedding and global path embedding. The critical

path aware training aligns the estimated timing correlation matrix
with post-synthesis timing-critical dependencies.

Ground-truth Timing
- endpoint arrival time
-critical path information

Logic
Synthesis

Analysis

‘ Timing

allows for the automatic generation of endpoint embeddings through
the graph encoder (e.g., GNN), which are subsequently utilized
to predict timing performance. Nevertheless, existing graph-based
methods follow a localized message-passing scheme, which limits
their ability to capture long-range timing dependencies across the
entire circuit.

C. Graph Neural Network

Graph neural networks (GNNs) have emerged as a robust approach
for analyzing graph-structured data and extracting valuable insights
from interconnected information [27], [28]. Among the prevailing
GNN architectures are the message passing neural network (MPNN)
and the graph Transformer.

MPNNs employ an iterative message passing and aggregation
process to capture the structural relationships within node neighbor-
hoods [8], [9]. However, MPNNs are limited in learning long-range
dependencies due to their localized message passing approach, re-
stricting information propagation to immediate neighbors and gradual
spread across layers. In response to the challenge of capturing long-
range dependencies, Graph Transformers have been introduced [10]-
[12], extending the Transformer [29] architecture to graph data. By
incorporating a self-attention [29] mechanism, Graph Transformers
can assign varying importance to nodes relative to each other,
enhancing the model’s ability to capture distant relationships. Addi-
tionally, Graph Transformers can leverage positional encodings [30]
to provide the model with knowledge of node positions within the
graph topology, further enhancing its capacity to capture long-range
dependencies. Despite these strengths, Graph Transformers lack the
explicit mechanisms to identify, prioritize, and analyze critical paths
through the graph. The implicit nature of path information makes
it difficult for Graph Transformers to effectively learn the path-
dependent delays that are essential for accurate timing analysis.

D. Problem Definition

Problem 1 (Pre-synthesis Timing Prediction under Non-Uniform
Input Arrival Time). Given a pre-synthesis RTL block, we conduct
hierarchical timing evaluation by focusing on the timing paths within
the block. Specifically, we consider the timing paths from a primary
input (PI) of the block to a register input port or from a PI to a
primary output (PO). Our goal is to accurately predict the post-
synthesis arrival time at each endpoint (register input port or PO)
under varying input arrival time patterns.

III. OVERVIEW

Pre-synthesis timing prediction with non-uniform input arrival
times presents significant challenges, primarily in capturing long-
range timing dependencies and reflecting the impact of varying
input arrival patterns on critical path distribution. To address these
challenges, we introduce NUA-Timer, a novel pre-synthesis timing
prediction framework.

Fig. 3 shows the overview of NUA-Timer. Our approach begins
by transforming the RTL design into a bit-level heterogeneous graph
representation, as detailed in Section IV-A. At the core of NUA-
Timer lies the Bidirectional Propagation Neural Network (BPN),
which performs both forward and backward message propagation on
the constructed graph. This bidirectional scheme allows the model to
capture intricate long-range timing dependencies between inputs and
endpoints, overcoming the limitations of localized message passing
in MPNN.

The forward phase (detailed in Section IV-B) allows arrival time
to propagate from the PIs to the timing endpoints, generating a
forward timing embedding (FTE) for each endpoint. An attention-
based aggregation scheme drives this process, capturing local tim-
ing dependencies between nodes and their immediate predecessors.
Upon completion of the forward phase, the process transitions to
the backward phase, where the information flows from endpoints
back to inputs. During this stage, localized timing dependencies
are propagated backward to capture long-range timing dependencies
throughout the entire circuit. These dependencies are encapsulated
within a timing correlation matrix, which is then utilized to generate a
global path embedding (GPE) for each endpoint. The GPE effectively
aggregates timing-critical information across the entire circuit, ensur-
ing a comprehensive representation of the circuit’s timing dynamics
under non-uniform input arrival times.

By combining FTE with GPE, our framework generates a compre-
hensive final embedding for each timing endpoint. This combined em-
bedding is then processed through a Multi-Layer Perceptron (MLP)-
based regressor, which transforms these embeddings into predicted
post-synthesis endpoint arrival times.

During the model’s training phase, a customized loss function
(Section IV-D) is employed to ensure the alignment of the predicted
timing correlation matrix with actual post-synthesis critical path
labels. This supervision guides the BPN to adaptively model the
dynamic critical path distribution influenced by non-uniform input
arrival times.

The detailed descriptions of the algorithms can be found in the
following sections.

IV. METHODOLOGY
A. Preprocessing

Our framework begins by transforming the input RTL block design
into a bit-level graph representation. The input design first undergoes
preprocessing to extract the timing paths (combinational logic) from
PIs of the block to register input ports or POs. Register input ports
in the preprocessed design are treated as POs of the block. The
goal of NUA-Timer is to predict the arrival time at each timing
endpoint (PO). Following the timing path extraction, a directed
heterogeneous graph is constructed from the preprocessed design.
This graph considers two types of logic operators: single-bit-output
gates such as AND gates, and multi-bit-output arithmetic modules like
adders. In this graph, each output bit of these operators is represented
as a node, with directed edges connecting input bits (output bits of
predecessor operators) to output bits.

Forward Timing Embeddings

Final Embeddings

(FTEs) 2xM
[)
Input —
Graph
E— => N,=> Combine | 2> N,
L O i
T=0 => T=1 => T=2 ——=> T=3 => T=4 M M
|:> Forward Timing Propagation (FTP) @
. la; o ...ap a, ,] Normalized N
Attention Scores 1Ly T, M " Ng,017 s,€0 N |:'| > e
ﬂ 05 0502 1.0 Weighted Sum
(Back d Timing P ti BTP)
ackward Timing Propagation (BTP) <— ﬁ Global Path Embeddings "=
=4 < T=3 <— T=2 <= T=1 <= T=0 (GPEs) Endpoint Arrival
IDZ‘ I Time Regression
[0.83, ¢ : R
HO3 : j O (1, 0]
; RNt dule nod
np; ; : = = = O gate node O module node
. T G N ' - '
; iez: O inputnode {_} endpoint
{‘/—(_) [Cue s ...] correlation vector
. . 10, i I N Cu,e, correlation score between u and e
R e
--------------------------- Correlation Matrix (C) Py on-edge attention score

Fig. 4 Workflow of Bidirectional Propagation Neural Network (BPN). The forward stage propagates the input arrival times from PIs to endpoints,
and captures local timing correlations between nodes and their immediate predecessor. Then, in the backward stage, information flows from
endpoints back to PI to capture long-range timing dependencies throughout the entire circuit, which are encapsulated within a timing correlation

matrix C € RN *Ne

The constructed graph comprises three distinct types of nodes:
input nodes, gate nodes (output bits from gate operators), and module
nodes (output bits from module operators). Directed edges link each
gate input bit to the gate’s output bit, accurately mapping data
flow and timing dependencies. On the other hand, connections to
module nodes are established more selectively. Each module node
connects only with those inputs of the module that directly influence
it, typically those inputs of lower or equal bit positions. Taking an
adder output pin at bit position m as an example, we only add
directed edges from adder input pins at bit position m or lower to it.
Additionally, multiplexers are treated uniquely by decomposing them
into individual gates, based on the principle that a multiplexer output
at bit position m is influenced only by the control signals and the
input signals at the same bit position m. To facilitate backward timing
propagation, reverse edges (colored grey in Fig. 3) are incorporated
into the graph.

For each input node, we initialize its feature R’ to include its input
arrival time and a one-hot vector representing its type (either an input
port or a constant value). For all other nodes, we include the one-hot
vector denoting the operator type in their initial feature. Additionally,
we consider the bit positions of a module’s inputs/outputs as features,
which are closely related to the intra-module delay. For each module
node, we use its bit position as its node feature, and for each of
its predecessor edges, we use the bit position of the corresponding
predecessor node as the edge feature.

B. Forward Timing Propagation

The forward timing propagation (FTP) emulates the delay prop-
agation process during timing analysis, propagating input arrival
times (delays) from PIs to endpoints. Utilizing an asynchronous
message-passing framework [31], messages propagate sequentially in

. Here N is the total number of nodes, and NN, is the number of endpoints.

topological order from inputs to endpoints, advancing level by level
(as shown in Fig. 4).

Recognizing that the arrival time at a node is predominantly
influenced by the maximum arrival time at its predecessors, we
integrate an attention mechanism [32] to selectively highlight the
most influential predecessor. For a given node v, we compute the
attention coefficient for each of its predecessor nodes u, as illustrated
in Equation (1). The coefficient e, . quantifies the significance of
predecessor node v in determining the embedding of node v.

o(am W™ hy || by || RE]), Yo € Vi,
Cu,v = ’
’ o(ag W h, || kL)), Yo € V,.

Here V,, and V, denote the set of module/gate nodes, respectively,
and o represents the LeakyReLU activation function with a negative
slope of 0.2. a,, and a, denote the learnable attention vectors,
and W™ and W9 are learnable weight matrices. || denotes vector
concatenation, - represents transposition, h; and h;yu denotes the
initial feature of node v and edge (u — wv), respectively, and
h{ denotes the generated embedding of node w. Different attention
vectors a,, and ay are used for module and gate nodes to address
their unique characteristics.

ey

To standardize attention coefficients across different predecessors,
we apply a softmax normalization as shown below:

Quyyp = softmaxy (ey,») = exp(€u.v) 2)

B ZkeN(v) exp(ex,v)’
where N(v) denotes the set of predecessor nodes of v. The normal-
ized attention scores are stored on the corresponding reverse edges
(grey numbers in Fig. 4) and are the basis for backward timing
propagation.

The scores are then used to calculate a weighted combination
of the embeddings from predecessor nodes, forming the forward
timing embedding (FTE) for node v. Formally, this can be written
as Equation (3).

’

fi(hv), VUGVZ',
hl =S 0(Zeni) oWy || Huull B, Y0 € Vi, (3)
U(ZuEN(v) au,vwg[hv || hﬁ])7 Yov € Vg.

Here o represents the ReLU activation function, V; denotes the set
of input nodes, and f* is a multilayer perceptron model (MLP).

Driven by the above attention mechanism, FTP effectively mimics
delay calculation in timing analysis. The calculated attention scores
adaptively vary under different input arrival time distributions, cap-
turing and prioritizing the most impactful predecessors.

C. Backward Timing Propagation

While FTP captures local timing correlations between nodes and
their immediate predecessors, it fails to understand longer-range
timing dependencies within the circuit. To address this limitation,
we introduce a backward timing propagation (BTP) algorithm that
evaluates the importance of each node relative to every endpoint,
offering a more comprehensive, global perspective of timing depen-
dencies within the circuit.

To enhance efficiency, BTP is designed to operate in batches,
processing a group of endpoints simultaneously, typically with a batch
size of 1024 or larger. Let N represent the total number of nodes in
the graph, and N, represent the number of endpoints in each batch.
Initially, a correlation matrix C' € RY*MNe is established, where the
i-th row vector C; € RV represents the timing correlation between
the i-th node v; and the endpoints. For the endpoints themselves,
their respective row correlation vectors are initialized using a one-hot
embedding that uniquely identifies the index of each endpoint within
the batch. The correlation vectors for all other nodes are initialized
to zero.

After initialization, BTP starts from the endpoints and progresses
along the reverse edges in reverse topological order. Nodes at the
same reverse topological level are processed simultaneously. As
shown in Fig. 4, the correlation vector of each node is updated
as the weighted sum of its predecessors’ correlation vectors, where
the weights are given by the attention scores computed during FTP.
Formally, this can be written as Equation (4), where N" (u) denotes
the set of predecessors of u in the reverse graph.

Ci= Y.

v; ENT (v;)

oy, X Cj.)

BTP concludes when all inputs have been reached, resulting in
the complete correlation matrix C € RY*Ne_ Each element C;;
in this matrix, which ranges from 0 to 1, quantifies the probability
of the ¢-th node being part of the critical path(s) for the j-th
endpoint. Consequently, the correlation matrix effectively serves as
an approximation of the critical path distribution for each endpoint.
Actually, it is intuitive and straightforward to predict the critical path
for an endpoint using this correlation matrix. As illustrated in Fig. 5,
a greedy traversal along the reverse edges, starting from the endpoint
and selecting the node with the highest correlation score at each
step, can predict the critical path for a given endpoint. The process
of identifying these critical paths is pivotal as it offers substantial
opportunities for guiding early-stage timing optimization, which will
be left for future work.

An intriguing attribute of our timing correlation matrix is described
as follows:

NUIAT Correlation Scores |~~~ "7 777 T/, i
U I Associated Withe; ! i3 :
|
: | R e 12:
! ! Ging Mg M3 \iyl3iyi i
| I S 1
[Post-synthesis Critical
,,,,, Inputs label for e;
ms " s G
| PR !
g €& n; ny Ny gy ig!
C =B TR i
\ 3
| =i : —— o ~—— 1 — Align iol
I i

Fig. 5 An example that shows how the predicted correlation matrix
aligns with the ground-truth post-synthesis critical path distribution.
Here CP is for critical path, and NUIAT is for non-uniform input
arrival times. Predicted critical paths for an endpoint can be obtained
through reverse traversal based on the correlation scores (the darker
the larger).

Property 1 (Normalized Input Correlation Scores). For any endpoint,
the sum of the correlation scores for all associated inputs equals one.

The above property emerges intuitively when we consider the
backward propagation from an endpoint as a random walk along
the directed reverse edges starting from that endpoint, with the edge
attention scores acting as transition probabilities. The correlation
score between any input and the endpoint represents the probability
that the random walk terminates at that input, ensuring that the total
probability for all related inputs sums to one.

The correlation matrix derived from BPN shares similarities with
the self-attention mechanism observed in Graph Transformers, where
importance scores are allocated to nodes in relation to one another.
Building upon this understanding, we introduce a global path embed-
ding (GPE) technique that leverages information from all nodes in
the graph to capture long-range critical path details for each endpoint.
The global path embedding of the j-th endpoint is computed as
follows:

Ck,;
Evkév Ckyj

where o is the RuLU activation function, C; ; denotes the correlation
score between the i-th node v; and the j-th endpoint e;, V and
V, represent the set of all nodes and all input nodes, respectively.
In the above equation, we concatenate the weighted sum of all
nodes’ forward timing embeddings and the weighted sum of all input
nodes’ forward timing embeddings, where the weights represented by
the correlation scores are normalized to ensure that the global path
embeddings are comparable across different circuits.

Subsequently, we concatenate the forward timing embedding h¥
and the global path embedding hY to form the final embedding
for each endpoint. The concatenated embedding is then processed
through an MLP-based regressor, which transforms these embeddings
into predicted post-synthesis arrival times. Formally, this can be
written as:

ne, = o

v €V

xhl || > Cigxhl] (s

v; €V

d;j = [P (kL || hE))). (6)

Here d; denotes the predicted arrival time of the j-th endpoint, and
fP? represents an MLP model.

D. Critical Path Aware Loss Function

While BPN effectively captures long-range timing dependencies
through the correlation matrix C € R™*Ne and the global path
embedding (GPE), its performance hinges on the accuracy of C
in reflecting post-synthesis timing dependencies, particularly the

critical path distribution. An inaccurate correlation matrix can degrade
performance. To address this, a critical path aware loss (CPL) function
is introduced to explicitly integrate post-synthesis critical path labels
into the training process.

The primary challenge in annotating post-synthesis critical paths
on the pre-synthesis circuit lies in the absence of a direct mapping
between pre- and post-synthesis circuit components. To effectively
address this issue, we adopt a pairwise annotation method (input-
endpoint pair) that capitalizes on the consistency of input/output (I0)
signals and registers between the pre- and post-synthesis designs. This
consistency allows us to accurately label the critical inputs for each
endpoint as the startpoints of its critical paths from the post-synthesis
timing report.

Building on these annotated pairwise critical paths, we design
a tailored loss function, namely critical path aware loss (CPL),
that enhances the model’s capability to capture long-range timing
dependencies. As illustrated in Property 1, the sum of the correlation
scores for all inputs related to any endpoint equals one. This indicates
that the correlation score between the inputs and an endpoint can be
interpreted as the probability distribution of the inputs being critical
to the endpoint. Our CPL function, depicted in Fig. 5, is designed to
align the model’s predicted critical input distribution with the actual
post-synthesis critical input labels by maximizing the correlation
scores between each endpoint and its labeled critical inputs. In doing
so, it also enhances the correlation scores along the critical paths that
connect these critical inputs to their respective endpoints.

To preserve structural information, we opt to maximize the total
correlation scores of each endpoint’s near-critical inputs rather than
focusing on a single input. Specifically, we target critical paths whose
arrival times fall within 0.95 to 1 times the maximum arrival time of
the endpoint. Near-critical paths are defined as those whose arrival
times fall within 0.95 to 1 times the maximum arrival time of the
endpoint. A penalty term is introduced to distribute the correlation
scores more evenly among the near-critical inputs. This method
ensures that we account for a broader range of critical inputs,
reflecting a more comprehensive view of each endpoint’s timing
dependencies.

The balanced critical path score p; for the j-th endpoint is
computed as follows:

Z C,]— > |Cz',j—|vc

v EVE() v €VE(J)

@)

2 Gl

v €VE(5)

where V§(j) denotes the near-critical inputs for the j-th endpoint.
Property 1 ensures that the critical path scores for different endpoints
are comparable in magnitude.

The overall loss function is then defined as:

L= Zexp(l —p;) x (dj — d;)?, ®)

where d; and dAj denote the predicted and groundtruth arrival time of
the j-th endpoint, respectively. The exponential term exp(l — p;)
serves as a weighting factor for the Mean Squared Error (MSE)
loss, which is dependent on the critical path scores. By minimizing
this loss function, the model not only seeks to reduce the error in
arrival time predictions but also aims to maximize the total correlation
scores of the post-synthesis critical inputs. This dual focus is essential
for enhancing the reliability and efficacy of pre-synthesis timing
predictions.

Our customized loss function offers a more explicit approach for
adjusting the timing correlation matrix compared to the commonly

TABLE I The statistics of our synthetic dataset, which comprises 400
designs. We sample 100 sets of random input arrival time distributions
for each design.

#K Nod # Endpoint
Group #Cases oces fidpomnts
range average range average
SYNI | 300x100 | 1~20 8 10~150 35
SYN2 | 100x100 | 20-80 40 30~350 150

TABLE II The detailed information about the open-source testing
dataset. We sample 100 sets of random input arrival time distributions
for each design.

’ Usage Designs

gpio, ps2, ac97_ctrl, wb_lcd
uart16550
pid_controller, systemcaes

Interface Controllers

Processing and System Control .
picorv32

Multimedia Processing y_quantizer, y_huff, y_dct

Security and Signal Modulation pwm, ecg, aes128

oc_wb_dma, wb_conmax,

Memory and Interconnect

oc_mem_ctrl, wb_dma

used mean squared error (MSE) loss, which primarily supervises
based on endpoint arrival time alone. Training the BPN model with
this specialized loss function allows it to adaptively refine the timing
correlation matrix and the on-edge attention scores. This refinement
process not only enhances the forward timing embedding derived
from the forward propagation but also improves the global path
embedding associated with the correlation matrix. As a result, our
approach leads to more precise and reliable timing predictions.

V. EXPERIMENTS
A. Experimental Setup

We developed the NUA-Timer framework with DGL [33] and
PyTorch [34]. The neural networks were trained on a Linux machine
with 16 Intel Xeon Gold 6226R cores (2.90GHz), one GeForce RTX
3090 Ti graphics card, and 24 GB of main memory. The embedding
dimension of our BPN model is set to 128, and the MLP used for
regression has 3 layers with a hidden dimension of 256. Our model
was trained for 100 epochs with a learning rate of 0.001 and a batch
size of 1024.

For comprehensive training, we generated a synthetic dataset of
400 RTL designs. For each design, we sampled 100 sets of random
input arrival time patterns, resulting in a total of 40,000 synthetic
cases. Detailed characteristics of this synthetic dataset are presented
in TABLE 1. We categorized the 400 designs into two groups based
on design size and distributed designs in each group into training,
validation, and testing subsets in a 0.7:0.1:0.2 ratio, respectively. This
design-level split ensures that the test designs remain unseen during
the training phase, providing an unbiased evaluation. To evaluate the
generalization capability of our proposed method, we also prepared
a test dataset comprising open-source designs from OpenCores [35],
details of which are provided in TABLE II. The open-source dataset
encompasses a broad spectrum of applications, including control,
memory, multimedia, cryptography, and processor designs. Similar
to the synthetic dataset, we sampled 100 sets of random input arrival
time patterns for each open-source design. These open-source designs
were strictly used for testing purposes to prevent any exposure during
the training phase.

TABLE III Performance Comparison on the synthetic benchmark. Path-based methods suffer from the over-fitting issue, and our method

outperforms all baselines on the unseen test designs.

Benchmark ACCNN [7] GraphGPS [12] MasterRTL [4] RTL-Timer [5] NUA-Timer
R? MAPE R? MAPE | R? MAPE| R’ MAPE| R? MAPE

Train | SYNT [0861 4.1 -0.029 13.6 | 0.917 3.2 0.914 3.1 0.903 3.7

SYN 2 | 0.725 42 -0.098 9.3 0.906 2.8 0.875 3.2 0.871 3.3

Test | SYN'1 | 0843 5.1 0.009 17.1 0.72 7.6 0.853 5.5 0.902 45

SYN 2 | 0.728 45 -0.127 8.2 0.556 6.2 0.715 49 0.813 3.8

TABLE IV Performance Comparison on the open-source test benchmark, where ep is for endpoint. All designs here are not exposed during
training, and each design is sampled with 100 sets of random input arrival times. Our proposed NUT-Timer outperforms all the baselines,

demonstrating its superior generalization ability.

Benchmark ACCNN [7] GraphGPS [12] MasterRTL [4] RTLtimer [5] NUA-Timer

Designs #Knodes #Kep | R MAPE| R?> MAPE| R? MAPE| R?® MAPE| R? MAPE
gpio 1.8 0.4 0267 142 [-0.108 198 [0.130 167 | 0577 11.0 [0901 5.6
pwm 3.6 0.2 0.680 105 | -0414 249 | 0.765 105 | 0.764 96 | 0844 7.7
ps2 3.7 0.2 0553 17.0 | -0061 302 | 0293 21.1 | 0719 133 | 0.856 9.8
ac97_ctrl 7.1 0.4 0.640 147 | 0000 29.0 | 0.020 245 | 0503 137 | 0.839 84
pid_controller 9.0 0.4 0.471 11.2 | -0.700 23.1 | 0.505 125 | 0.784 79 | 0827 6.7
wb_lcd 10.1 0.6 0.653 94 |-0262 214 |-0.010 194 | 0.680 97 |0914 50
uart16550 11.3 0.6 0.390 90 |-0737 190 | 0032 144 | 0296 109 | 0.859 4.9
systemcaes 15.4 0.7 0234 126 | -1.181 28.6 | 0.620 11.5 | 0.748 87 | 0682 99
picorv32 28.6 1.6 0.736 63 | -2.147 225 | 0367 10.1 | 0485 92 | 0746 6.0
wb_dma 32.5 0.7 0.115 21.8 | -0.405 31.7 | 0717 125 | 0670 114 | 0916 5.9
oc_wb_dma 32.5 2.0 0.046 116 | -1.467 289 | 0.649 11.1 | 0712 86 | 0911 49
oc_mem_ctrl 34.9 1.8 | -0.718 241 | -1.117 344 | 0513 182 | 0413 232 | 0718 12.0
y_quantizer 40.7 2.8 0.585 18.0 | -0.036 328 | 0227 193 | -0435 274 | 0.656 14.8
y_huff 41.6 2.4 0.578 134 | -0.009 221 | -0206 21.8 | -0307 202 | 0.785 9.2
wb_conmax 59.8 2.0 0239 111 | -1489 213 | 0.557 9.8 0.838 54 | 0847 48
ecg 177.7 73 | -0001 138 | -0.057 214 | 0182 165 | 0081 169 | 0.831 6.4
y_dct 227.6 53 | 0256 153 | -0406 230 | 0.694 120 | 0497 17.0 | 0732 9.3
aes128 256.5 107 | 0518 221 | -0.137 439 | 0528 168 | 0.114 251 | 0921 68

\ AVG. 55.2 22 [0318 142 [-059 266 [0366 155 | 0452 138 [0.821 7.67 |

For experiments, we evaluate our proposed method within the
FPGA design flow, where the circuit’s pre-synthesis and post-
synthesis topologies differ significantly, posing substantial challenges
for accurate pre-synthesis timing prediction. The task is to predict
the post-synthesis arrival times at the timing endpoints based on
only pre-synthesis information. To collect ground-truth labels, we
use a commercial tool for logic synthesis and post-synthesis timing
analysis. The FPGA board employed for these experiments consists
of over 400,000 Look-Up Tables (LUTs) and 400,000 D-type Flip-
Flops (DFFs), supporting a DDR memory interface with a data rate
of 1866 Mbps and high-speed serial transceivers (SerDes) operating
at 12.5 Gbps. The device is packaged in a Fine-pitch Ball Grid Array
(FCBGA) with 900 balls (FCBGA900).

We compare NUA-Timer against state-of-the-art pre-synthesis tim-
ing evaluation methods, including path-based methods [4], [5] and
graph-based methods [7], [12]. MasterRTL [4] identifies a single
pre-synthesis critical path for each endpoint and applies a tree-based
model (e.g., Random Forest) with feature engineering to make predic-
tions. Similarly, RTL-Timer [5] relies on feature engineering and tree-
based models but adds randomly sampled paths along with the critical
path for each endpoint. The endpoint arrival times are then calculated
based on the maximum predicted path delays. On the other hand, the
graph-based approach ACCNN [7] estimates the endpoint arrival time
by analyzing the fanin structures and topologies, encoded through a
GNN. Additionally, we include the Graph Transformer (GT) [12] as
a baseline model, renowned for its efficacy in capturing long-range
dependencies within graphs. To ensure a fair comparison, we have re-

implemented the baseline methods to align with our specific problem
context and have employed the official hyperparameters during the
training phase.

To evaluate the model’s performance, we employ two metrics: the
coefficient of determination (R?) and the mean absolute percentage
error (MAPE). The R? metric is crucial as it measures the proportion
of variance in the dependent variable that is predictable from the
independent variables, effectively assessing how well the model fits
the data. Conversely, MAPE offers insight into the model’s accuracy
by providing a direct average of the percentage errors made by the
model’s predictions. These metrics together give a comprehensive
view of the model’s predictive capabilities and accuracy.

B. Overall Performance

As mentioned above, all the methods were trained using a synthetic
dataset and subsequently evaluated on both unseen synthetic and
open-source datasets. As indicated by the results listed in TABLE III
and TABLE 1V, our proposed method NUA-Timer outperforms the
baseline methods on both synthetic and open-source testing designs.
Particularly, NUA-Timer shows a notably larger improvement com-
pared to baseline methods on the real-world open-source designs. The
reason may be that the open-source designs share less similarity with
the training synthetic designs, necessitating a strong generalization
ability to perform well on these designs.

From the results listed in TABLE III, we find that the path-based
methods [4], [5] suffer from the over-fitting issue, showing impressive
results on training datasets but failing to generalize effectively to new,

0.82 |- 9.8
0.75 8.9
0.6 6.5
foop P fe f foop P 9 f

(a) Average R? (b) Average MAPE (%)

Fig. 6 Results of ablation study, measured by the average performance
on the open-source benchmark.

unseen data. This limitation stems from variations in post-synthesis
critical path distributions across different designs, which can signifi-
cantly differ from the pre-synthesis critical paths used for predictions
by these methods. On the other hand, the GNN-based method [7]
exhibits less tendency to overfit on the synthetic dataset but falls short
in performance due to its localized message aggregation scheme. This
method struggles to capture long-range timing dependencies, which
are essential for accurate timing estimation under varying input arrival
times. Additionally, the graph transformer-based baseline [12] does
not yield satisfactory results in timing prediction, primarily due to its
inability to adequately understand critical timing paths.

To comprehensively evaluate the generalization capabilities of
the models, experiments were also conducted on the benchmark
consisting of open-source designs. The results listed in TABLE IV
indicate a pronounced decline in performance by the baseline methods
when applied to unseen real-world designs, particularly with larger
designs. This performance dip may be attributed to the lower sim-
ilarity between the open-source designs and the training synthetic
designs, which increases the prediction difficulty. This underscores
the insufficiency of manual feature engineering or simplistic graph
neural networks in accurately capturing long-range timing depen-
dencies under non-uniform input arrival times. Our proposed NUA-
Timer achieves a substantial reduction in MAPE by 44.2% and
an enhancement in R? by 82.2% on average when compared to
the best-performing baseline [5]. Notably, our method excels even
with testing designs significantly larger than those used in training,
showcasing its superior scalability and generalization capabilities.
This robustness and adaptability underscore the effectiveness of our
approach in handling diverse and complex design challenges in real-
world scenarios.

In summary, our proposed approach demonstrates a robust capabil-
ity to generalize and accurately predict timing across a diverse range
of circuit designs, thanks to its comprehensive handling of intricate
timing dependencies.

C. Ablation Study

To further assess the efficacy of the proposed techniques, we
conducted ablation studies. Let p denote our critical path aware
loss (CPL) function, g denote the global path embedding (GPE), f
represent the full version of our method, and f~ represent the model
without component x. Specifically, we compare the performance of
four models: f797, f79, f7P and f, on the open-source testing
benchmark. As shown in Fig. 6, the removal of either CPL or GPE
leads to suboptimal performance, while removing both of them leads
to the worst performance. Quantitatively, removing CPL results in a
reduction of the average R? from 0.82 to 0.75 and an increase in
average MAPE from 7.7% to 8.7%. Removing GPE results in an
even more significant drop, with the average R? decreasing to 0.73
and the average MAPE increasing to 8.9%. The combined removal

y_dct
ecf aes128

w

- Q
o 102 5
£ 10! °
= “wh_conmax b
g oc_mem_ctrl /y_/quantlzer %
-4 T “oc_wh_dma¥-huff o
= 7}
g S
= @ e 6550 5
= N L — 2
] P4
Z 100 10!

ac.trl \
gpjo

pid_controller

10! 102 103 104
Commercial Logic Synthesis Tool Runtime (s)

Fig. 7 NUA-Timer runtime vs. commercial tool runtime.

of both components results in an R? of 0.68 and an MAPE of 9.8%.
These results demonstrate the significant contribution of both CPL
and GPE to the overall performance of our method.

D. Runtime Analysis

Fig. 7 shows the runtime comparison between NUA-Timer and
the commercial tool to obtain post-synthesis timing evaluation. The
runtime for NUA-Timer includes both preprocessing and model
inference, whereas the runtime for the baseline tool includes logic
synthesis and timing analysis. We calculate the average runtime across
100 different sets of random input arrival times. These evaluations
are conducted on the same CPU machine to maintain consistency in
the comparison.

Each design in the analysis is denoted by a circle, where the
size of the circle is proportional to the size of the design. The
variation in the color shades indicates the relative speedup of NUA-
Timer compared to the baseline, with darker shades representing
slower speeds and lighter shades indicating faster speeds. Notably,
NUA-Timer demonstrates a significant increase in speedup for larger
designs. For instance, it achieves an impressive speedup exceeding
300 times for the aes128 design. On average, NUA-Timer facilitates
a speedup of over 60 times, highlighting its superior efficiency.

VI. CONCLUSION

This paper introduces NUA-Timer, a timing prediction framework
addressing non-uniform input arrival times in hierarchical designs. We
develop a Bidirectional Propagation Neural Network (BPN) to capture
long-range timing dependencies and accurately reflect post-synthesis
critical paths. The BPN model begins with an attention-based forward
stage to capture local timing dependencies, following a backward
propagation process to capture the long-range timing dependencies
across the whole circuit. A customized loss function, informed
by post-synthesis critical path information, is utilized to enhance
the training process of our model. Experiments on both synthetic
and open-source designs demonstrate NUA-Timer’s superiority over
state-of-the-art methods. It is important to note that our proposed
methodology is universal and can be applied broadly across various
timing prediction tasks. Looking ahead, our future work will aim
to apply our method to other circuit formats such as ASICs and
other EDA stages like physical design. We are also interested in
integrating our method into logic synthesis flows, e.g., guiding timing
optimization based on predicted critical paths.

ACKNOWLEDGEMENTS

The project is supported in part by Research Grants Council of
Hong Kong SAR (No. RFS2425-4502 and No. CUHK14211824).

[1]

[2]

[3

=

[4

=

[5

=

[6

=

[7

—

(10]

[11]

[12]

(13]

[14

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

C. Xu, C. Kjellgvist, and L. W. Wills, “SNS’s not a synthesizer: a
deep-learning-based synthesis predictor,” in IEEE/ACM International
Symposium on Computer Architecture (ISCA), 2022.

K.-M. Lai, T.-W. Huang, P.-Y. Lee, and T.-Y. Ho, “ATM: A high accuracy
extracted timing model for hierarchical timing analysis,” in JEEE/ACM
Asia and South Pacific Design Automation Conference (ASPDAC), 2021.
B. Li, N. Chen, M. Schmidt, W. Schneider, and U. Schlichtmann, “On
hierarchical statistical static timing analysis,” in JEEE/ACM Proceedings
Design, Automation and Test in Eurpoe (DATE), 2009.

W. Fang, Y. Lu, S. Liu, Q. Zhang, C. Xu, L. W. Wills, H. Zhang, and
Z. Xie, “MasterRTL: A pre-synthesis PPA estimation framework for
any RTL design,” in IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2023.

W. Fang, S. Liu, H. Zhang, and Z. Xie, “Annotating slack directly on
your verilog: Fine-grained rtl timing evaluation for early optimization,”
in ACM/IEEE Design Automation Conference (DAC), 2024.

Y. Ouyang, S. Li, D. Zuo, H. Fan, and Y. Ma, “ASAP: Accurate Syn-
thesis Analysis and Prediction with Multi-Task Learning,” in ACM/IEEE
Workshop on Machine Learning CAD (MLCAD), 2023.

H. Zheng, Z. He, F. Liu, Z. Pei, and B. Yu, “LSTP: A Logic Syn-
thesis Timing Predictor,” in IEEE/ACM Asia and South Pacific Design
Automation Conference (ASPDAC), 2024.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Annual Conference on Neural Information
Processing Systems (NeurIPS), 2017.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are
Graph Neural Networks?” in International Conference on Learning
Representations (ICLR), 2018.

Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph trans-
former,” in The Web Conference, 2020.

C. Ying, T. Cai, S. Luo, S. Zheng, G. Ke, D. He, Y. Shen, and T.-Y. Liu,
“Do transformers really perform badly for graph representation?” An-
nual Conference on Neural Information Processing Systems (NeurIPS),
vol. 34, pp. 28 877-28 888, 2021.

L. Rampasek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, and
D. Beaini, “Recipe for a general, powerful, scalable graph trans-
former,” Annual Conference on Neural Information Processing Systems
(NeurIPS), vol. 35, pp. 14501-14 515, 2022.

P-Y. Lee and I. H.-R. Jiang, “iTimerM: A compact and accurate
timing macro model for efficient hierarchical timing analysis,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 23, no. 4, pp. 1-21, 2018.

F. Dartu and Q. Wu, “To do or not to do hierarchical timing?” in ACM
International Symposium on Physical Design (ISPD), 2013.

T.-Y. Lai, T.-W. Huang, and M. D. Wong, “LibAbs: An efficient
and accurate timing macro-modeling algorithm for large hierarchical
designs,” in ACM/IEEE Design Automation Conference (DAC), 2017.
K. K.-C. Chang, C.-Y. Chiang, P.-Y. Lee, and 1. H.-R. Jiang, “Timing
macro modeling with graph neural networks,” in ACM/IEEE Design
Automation Conference (DAC), 2022.

E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-based
pre-routing timing prediction with reduced pessimism,” in ACM/IEEE
Design Automation Conference (DAC), 2019.

A. B. Kahng, U. Mallappa, and L. Saul, “Using machine learning to
predict path-based slack from graph-based timing analysis,” in IEEE
International Conference on Computer Design (ICCD), 2018.

X. He, Z. Fu, Y. Wang, C. Liu, and Y. Guo, “Accurate timing prediction
at placement stage with look-ahead RC network,” in ACM/IEEE Design
Automation Conference (DAC), 2022.

P. Cao, G. He, and T. Yang, “Tf-predictor: Transformer-based prerouting
path delay prediction framework,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), vol. 42, no. 7,
pp. 2227-2237, 2022.

Z. Xie, R. Liang, X. Xu, J. Hu, C.-C. Chang, J. Pan, and Y. Chen,
“Preplacement net length and timing estimation by customized graph
neural network,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 41, no. 11, pp. 4667—4680,
2022.

Q. Song, X. Cheng, and P. Cao, “Critical paths prediction under multiple
corners based on bilstm network,” in ACM/IEEE Design Automation
Conference (DAC), 2023.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[32]

[33

=

[34]

[35]

Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine
inspired graph neural network model for pre-routing slack prediction,”
in ACM/IEEE Design Automation Conference (DAC), 2022.

G. He, W. Ding, Y. Ye, X. Cheng, Q. Song, and P. Cao, “An optimization-
aware pre-routing timing prediction framework based on heterogeneous
graph learning,” in IEEE/ACM Asia and South Pacific Design Automation
Conference (ASPDAC), 2024.

Z. Wang, S. Liu, Y. Pu, S. Chen, T.-Y. Ho, and B. Yu, “Restructure-
tolerant timing prediction via multimodal fusion,” in ACM/IEEE Design
Automation Conference (DAC), 2023.

X. Peng, X. Song, and Y. Zou, “PreRoutSGAT: Pre-Routing Timing
Prediction Based on Graph Neural Network with Global Attention,”
2024.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions
on Neural Networks and Learning Systems, 2020.

Z. Wang, C. Bai, Z. He, G. Zhang, Q. Xu, T.-Y. Ho, B. Yu, and Y. Huang,
“Functionality matters in netlist representation learning,” in ACM/IEEE
Design Automation Conference (DAC), 2022.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Annual Con-
ference on Neural Information Processing Systems (NeurIPS), vol. 30,
2017.

N. Keriven and S. Vaiter, “What functions can graph neural networks
compute on random graphs? the role of positional encoding,” An-
nual Conference on Neural Information Processing Systems (NeurIPS),
vol. 36, pp. 11823-11849, 2023.

Z. He, Z. Wang, C. Bai, H. Yang, and B. Yu, “Graph learning-based
arithmetic block identification,” in IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2021.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” International Conference on
Learning Representations (ICLR), 2018.

M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou,
Q. Huang, C. Ma et al., “Deep graph library: Towards efficient and
scalable deep learning on graphs,” arXiv preprint arXiv:1909.01315,
2019.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imper-
ative style, high-performance deep learning library,” Annual Conference
on Neural Information Processing Systems (NeurlPS), vol. 32, 2019.
“OpenCores,” https://opencores.org.

https://opencores.org

