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Background

Crosstalk challenges:

¢ Scaling: Wire length-to-width adjustments — increased coupling capacitance.

(a) Transition slowdown or speedup (b) Noise bump

Existing Methods:

¢ Traditional simulations: Challenges in multi-input transfer functions & holding
resistance; Issues with logic correlation; Computationally intensive

* Previous learning-based works: Focus on only RC paratistics;! Lack of coupling
features or timing features;* Limited methodology.

!Andrew B Kahng, Mulong Luo, and Siddhartha Nath (2015). “SI for free: machine learning of
interconnect coupling delay and transition effects”. In: Proc. SLIP, pp. 1-8.

*Yuyang Ye et al. (2023). “Fast and accurate wire timing estimation based on graph learning”.
In: Proc. DATE. IEEE, pp. 1-6. 3/16
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Primary causes of crosstalk noise:
@ Coupling effect;

® Timing window overlapping between nets.
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Algorithm



Data Preparation

Description of node and path features.

O driver Feature | Description
Sl Capacitance values
. fuz Number of input nodes
O receiver fu3 Number of output nodes
fus Total input capacitance
O ground fus Total output capacitance
capacitors fue Number of connected resistors
Sz Total input resistance
coupling fus Total output resistance
O . fuo Ratio of coupling-to-total capacitance
capacitors fo Indicates if it is a victim net
. fm List of corresponding aggressors
wire path fn Incremental delay for each wire path
f Minimum transition time for driver/receiver
fo3 Maximum transition time for driver/receiver
i Minimum arrival time for driver/receiver
frs Maximum arrival time for driver/receiver

Graph construction:
* Nodes: drivers, receivers, and capacitances; Edges: resistances.
* HGAT input: a heterogeneous graph G = (V, £);
Xdict : {"'coup” : Xeoup, "cap” : Xeap - - - }; Edict:{ ("cap”, "coup") : ecap, coup - - - }-
® Graph transformer input: G = (£, V, P), where P denotes wire paths; a node feature
matrix X, a path feature matrix P and a weighted adjacency matrix A = [a; j].

Predition objective:

® twire = g(fnafp; eg); ftrans = h(fnafp; Hh) 6/16
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Overview of GraphCAD.
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HGAT Model: Coupling Effect Analysis

Intra-relation information encoding;:

¢ Learn the weight among neighboring nodes of the same type:

ey = o(ad - [hillh). )
* Normalize: .
e
041(? o = softmax(ef?v) - exp(e,,) . -
7 7 2 kene (u) XP(euk)
¢ The relation-based embedding of node u:
zp =0( Y apyho). -

veEN® (1)
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HGAT Model: Coupling Effect Analysis

Aggregation of relation-level information:

¢ Average the importance of all the relation-level node embeddings:

eo, = Z q'" - tanh(W x z2 + b). 4)
|V9 | u€Ve,
¢ Normalize:
ap, = softmax(eg,) = ISXPA. 5)
2 j=1exp(ee;)
¢ Fuse the relation-level node embeddings to generate the final embeddings:
K

Z = Za@i X Z@i. (6)

i=1
¢ Global pooling and output:
yucar = GlobalPool(Z)

1
[(|V‘ Z || |VCU1‘»P|

Z f xv (7)

vepeoup
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Graph transformer model: Overlapping Net Analysis

o GraphSAGE: ") = ReLU (Norm (w<’> MEAN ({xSP} Ui ue N(v)})))
® Transformer: xj, = TransformerEncoder(x,(,Ll),Lz)
* GAT layers: x; =3, Ne(o) oo Wi,

wire path check

. attention layers
representations overlap

AY
i other

Graph Transformer model incorporating overlapping net information.
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Curriculum Learning Mechanism

Timing window overlap Curriculum learning

17 ) A 1
maxrmum complex

® Customized loss function:

L(0) = N ZC Ly f(xi30)), (8)
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Curriculum Learning Mechanism
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Experimental setting

Dataset preparation:
¢ Technology library: Open-source ASAP7,
¢ Synthesis & PnR: Design Compiler — Innovus,
® Feature extraction: PrimeTime non-SI mode,
¢ Ground truth: HSPICE.
Configurations:
¢ GraphCAD: pyg and pytorch, spef-parser(cpp),
¢ dynamic adjusted learning rate from 0.01 to 0.006,
¢ batch size: 128, 150 epochs,

¢ training: 20 hours on a single GPU.
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Overall Performance

Table: Comparison of estimation errors against HSPICE results.

Benchmarks RC-VA Predicted Wire Delay Predicted Slew at Receiver
PrimeTime NetTiming® MLP*  GraphCAD | PrimeTime NetTiming MLP  GraphCAD

wdsp 19 14.89% 31.32% 37.37% 25.66% 47.36% 30.04%  80.80% 26.03%
ael8 11 13.27% 23.39% 24.34% 16.42% 35.95% 35.71% 72.96% 34.82%
wh2axip 22 14.45% 24.37% 22.14% 12.51% 17.26% 2254%  33.75% 10.17%
usb_device 99 14.91% 22.38% 31.21% 21.18% 30.46% 28.37%  53.25% 27.93%
fpu 183 10.19% 23.00% 29.05% 20.25% 21.82% 34.64%  39.79% 20.84%
LSU 31 7.93% 22.83% 41.00% 18.31% 39.30% 40.03%  80.16% 36.81%
vga_led 24 15.82% 32.18% 65.24% 19.59% 43.70% 2433%  97.15% 20.45%
SmallQuadBoom | 511 6.62% 26.43% 27.71% 24.07% 16.72% 36.18%  29.63% 22.28%
SmallBoom 402 8.44% 25.64% 34.83% 21.92% 20.26% 35.08%  29.75% 23.52%
BoomCore 326 11.41% 31.92% 33.50% 24.91% 16.84% 45.77%  25.57% 24.05%
or1200 2 12.36% 14.15% 76.56% 9.42% 15.86% 4758%  42.14% 21.79%
sparc 174 10.30% 26.30% 29.00% 24.93% 19.47% 37.44%  28.72% 23.48%
Average - 11.72% 25.33% 37.66% 19.93% 27.08% 34.81%  51.14% 24.35%

Delta - -8.21% 5.40% 17.73% 0 2.74% 10.46%  26.79% 0

*Yuyang Ye et al. (2023). “Fast and accurate wire timing estimation based on graph learning”.
In: Proc. DATE. IEEE, pp. 1-6.

*Leilei Jin et al. (2024). “A Crosstalk-Aware Timing Prediction Method in Routing”. In: arXiv
preprint arXiv:2403.04145. 14/16



Runtime Comparison

S . Runtime (s)
® | HSPICE _PrimeTime  NetTiming [7] MLP _ GraphCAD | I PrimeTime
wdsp 34.222 12363 3.004 2.641 2.126 8.09 ~| 3 NetTiming
ael8 18.687 11.780 3.252 2.945 1.559 —3 MLP
wh2axi 38.667 15.045 4.297 1.180 2.188
usb_devil::e 169.281 16.026 4.838 1.225 5.905 53.89 m GraphCAD
fpu 321.501 21.878 5.862 1.199 9.246 |
LSU 55.532 24.155 5.296 1117 2371 14513
vga_led 46.886 16.284 5.896 1131 2.222
SmallQuadBoom | 903.420 43.565 7.397 2.886 25.861 |
SmallBoom 709.360 44.576 7.516 1.242 20769 33.16
BoomCore 590.145 67.807 7.204 2.812 20.486
0r1200 3.649 37.710 2639 2554 0.906
sparc 535.247 112.374 6.390 2.687 9.716 L L L
0 50 100 150
Average 285.550 35.297 5.299 1.968 8.613
Ratio ‘ 33.154 4.098 0.615 0.229 1.000 ‘ Speedup (x)
(a) Runtime comparison. (b) Mustration of runtime speedup.
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Conclusion

* We propose GraphCAD, an end-to-end GNN framework to predict crosstalk-affected
delays by jointly modeling coupling effects and overlapping nets.

® We combine heterogeneous graph learning and transformers to map
aggressor-victim interactions and analyze their overlapping timing windows.

¢ A curriculum learning strategy is implemented to handle complex multi-aggressor
scenarios progressively.

¢ Experimental studies validate the framework through tests on 7nm technology
open-source designs, demonstrating improved accuracy and efficiency.
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