International Symposium on Physical Design

GraphCAD: Leveraging <u>Gr</u>aph Neural Networks for <u>A</u>ccuracy <u>P</u>rediction <u>H</u>andling <u>C</u>rosstalk-<u>a</u>ffected <u>D</u>elays

Fangzhou Liu¹, Guannan Guo², Yuyang Ye¹, Ziyi Wang¹, Wenjie Fu³, Weihua Sheng², Bei Yu¹

¹The Chinese University of Hong Kong, Hong Kong SAR ²Huawei Design Automation Lab, Hong Kong SAR ³HiSilicon Technologies Co., Shanghai

1 Introduction

2 Algorithm

3 Results

Background

Crosstalk challenges:

• Scaling: Wire length-to-width adjustments \rightarrow increased coupling capacitance.

Existing Methods:

- **Traditional simulations**: Challenges in multi-input transfer functions & holding resistance; Issues with logic correlation; Computationally intensive
- **Previous learning-based works**: Focus on only RC paratistics;¹ Lack of coupling features or timing features;² Limited methodology.

¹Andrew B Kahng, Mulong Luo, and Siddhartha Nath (2015). "SI for free: machine learning of interconnect coupling delay and transition effects". In: *Proc. SLIP*, pp. 1–8.

²Yuyang Ye et al. (2023). "Fast and accurate wire timing estimation based on graph learning". In: *Proc. DATE*. IEEE, pp. 1–6.

3/16

Primary causes of crosstalk noise:

Coupling effect;

2 Timing window overlapping between nets.

Algorithm

Data Preparation

Description of node and path features.

Feature	Description
f _{n1}	Capacitance values
fn2	Number of input nodes
fn3	Number of output nodes
fn4	Total input capacitance
f _{n5}	Total output capacitance
fn6	Number of connected resistors
fn7	Total input resistance
f _{n8}	Total output resistance
fn9	Ratio of coupling-to-total capacitance
f _{n10}	Indicates if it is a victim net
f _{n11}	List of corresponding aggressors
f_{p1}	Incremental delay for each wire path
f_{p2}	Minimum transition time for driver/receiver
f_{p3}	Maximum transition time for driver/receiver
f_{p4}	Minimum arrival time for driver/receiver
f_{p5}	Maximum arrival time for driver/receiver

Graph construction:

- Nodes: drivers, receivers, and capacitances; Edges: resistances.
- **HGAT input**: a heterogeneous graph $\mathcal{G} = \langle \mathcal{V}, \mathcal{E} \rangle$; $X_{\text{dict}} : \{\text{"coup"} : x_{\text{coup}}, \text{"cap"} : x_{\text{cap}} \dots\}; E_{\text{dict}} : \{(\text{"cap"}, \text{"coup"}) : e_{\text{cap}, \text{coup}} \dots\}.$
- **Graph transformer input**: $\mathcal{G} = (\mathcal{E}, \mathcal{V}, \mathcal{P})$, where \mathcal{P} denotes wire paths; a node feature matrix X, a path feature matrix P and a weighted adjacency matrix $A = [a_{i,j}]$.

Predition objective:

•
$$t_{\text{wire}} = g(f_n, f_p; \theta_g);$$
 $t_{\text{trans}} = h(f_n, f_p; \theta_h)$

Overview

Overview of GraphCAD.

HGAT Model: Coupling Effect Analysis

Intra-relation information encoding:

• Learn the weight among neighboring nodes of the same type:

$$e_{u,v}^{\Theta} = \sigma(a_{\Theta}^{\top} \cdot [h_i || h_j]).$$
⁽¹⁾

Normalize:

$$\alpha_{u,v}^{\Theta} = \operatorname{softmax}(e_{u,v}^{\Theta}) = \frac{\exp(e_{u,v}^{\Theta})}{\sum_{k \in \mathcal{N}^{\Theta}(u)} \exp(e_{u,k})}.$$
(2)

• The relation-based embedding of node *u*:

$$z_{u}^{\Theta} = \sigma(\sum_{v \in \mathcal{N}^{\Theta}(u)} \alpha_{u,v}^{\Theta} h_{v}).$$
(3)

HGAT Model: Coupling Effect Analysis

Aggregation of relation-level information:

• Average the importance of all the relation-level node embeddings:

$$e_{\Theta_i} = \frac{1}{|\mathcal{V}_{\Theta_i}|} \sum_{u \in \mathcal{V}_{\Theta_i}} \boldsymbol{q}^\top \cdot tanh(W \times z_u^{\Theta_i} + b).$$
(4)

Normalize:

$$\alpha_{\Theta_i} = \operatorname{softmax}(e_{\Theta_i}) = \frac{\exp(e_{\Theta_i})}{\sum_{j=1}^{K} \exp(e_{\Theta_j})}.$$
(5)

• Fuse the relation-level node embeddings to generate the final embeddings:

$$Z = \sum_{i=1}^{K} \alpha_{\Theta_i} \times Z_{\Theta_i}.$$
 (6)

Global pooling and output:

$$y_{\text{HGAT}} = GlobalPool(Z)$$

= $[(\frac{1}{|\mathcal{V}|} \sum_{u \in \mathcal{V}} z_u) || (\frac{1}{|\mathcal{V}^{coup}|} \sum_{v \in \mathcal{V}^{coup}} f(x_v))].$ (7)
9/16

Graph transformer model: Overlapping Net Analysis

- GraphSAGE: $\mathbf{x}_{v}^{(l+1)} = \text{ReLU}\left(\text{Norm}\left(\mathbf{W}^{(l)} \cdot \text{MEAN}\left(\{\mathbf{x}_{v}^{(l)}\} \cup \{\mathbf{x}_{u}^{(l)} : u \in \mathcal{N}(v)\}\right)\right)\right)$
- Transformer: $x'_v = \text{TransformerEncoder}(x_v^{(L_1)}, L_2)$
- GAT layers: $\mathbf{x}''_v = \sum_{u \in \mathcal{N}_c(v)} \alpha_{vu} \mathbf{W} \mathbf{x}_u$

Graph Transformer model incorporating overlapping net information.

Curriculum Learning Mechanism

• Customized loss function:

$$L(\theta) = \frac{1}{N} \sum_{i=1}^{N} C \cdot \mathcal{L}(y_i, f(x_i; \theta)),$$
(8)
11/16

Curriculum Learning Mechanism

• Customized loss function:

$$L(\theta) = \frac{1}{N} \sum_{i=1}^{N} C \cdot \mathcal{L}(y_i, f(x_i; \theta)),$$
(8)
11/16

Curriculum Learning Mechanism

• Customized loss function:

$$L(\theta) = \frac{1}{N} \sum_{i=1}^{N} C \cdot \mathcal{L}(y_i, f(x_i; \theta)),$$
(8)
11/16

Results

Experimental setting

Dataset preparation:

- Technology library: Open-source ASAP7,
- Synthesis & PnR: Design Compiler \rightarrow Innovus,
- Feature extraction: PrimeTime non-SI mode,
- Ground truth: HSPICE.

Configurations:

- GraphCAD: pyg and pytorch, spef-parser(cpp),
- dynamic adjusted learning rate from 0.01 to 0.006,
- batch size: 128, 150 epochs,
- training: 20 hours on a single GPU.

Ponchmarka	RC-VA	Predicted Wire Delay			Predicted Slew at Receiver				
Denchinarks		PrimeTime	NetTiming ³	MLP ⁴	GraphCAD	PrimeTime	NetTiming	MLP	GraphCAD
wdsp	19	14.89%	31.32%	37.37%	25.66%	47.36%	30.04%	80.80%	26.03%
ae18	11	13.27%	23.39%	24.34%	16.42%	35.95%	35.71%	72.96%	34.82%
wb2axip	22	14.45%	24.37%	22.14%	12.51%	17.26%	22.54%	33.75%	10.17%
usb_device	99	14.91%	22.38%	31.21%	21.18%	30.46%	28.37%	53.25%	27.93%
fpu	183	10.19%	23.00%	29.05%	20.25%	21.82%	34.64%	39.79%	20.84%
LSU	31	7.93%	22.83%	41.00%	18.31%	39.30%	40.03%	80.16%	36.81%
vga_lcd	24	15.82%	32.18%	65.24%	19.59%	43.70%	24.33%	97.15%	20.45%
SmallQuadBoom	511	6.62%	26.43%	27.71%	24.07%	16.72%	36.18%	29.63%	22.28%
SmallBoom	402	8.44%	25.64%	34.83%	21.92%	20.26%	35.08%	29.75%	23.52%
BoomCore	326	11.41%	31.92%	33.50%	24.91%	16.84%	45.77%	25.57%	24.05%
or1200	2	12.36%	14.15%	76.56%	9.42%	15.86%	47.58%	42.14%	21.79%
sparc	174	10.30%	26.30%	29.00%	24.93%	19.47%	37.44%	28.72%	23.48%
Average	-	11.72%	25.33%	37.66%	19.93%	27.08%	34.81%	51.14%	24.35%
Delta	-	-8.21%	5.40%	17.73%	0	2.74%	10.46%	26.79%	0

Table: Comparison of estimation errors against HSPICE results.

³Yuyang Ye et al. (2023). "Fast and accurate wire timing estimation based on graph learning". In: *Proc. DATE*. IEEE, pp. 1–6.

⁴Leilei Jin et al. (2024). "A Crosstalk-Aware Timing Prediction Method in Routing". In: *arXiv* preprint *arXiv*:2403.04145. 14/16

Runtime Comparison

	Bonchmarks	Runtime (s)						
Deficilitatiks		HSPICE	PrimeTime	NetTiming [7]	MLP	GraphCAD		
	wdsp	34.222	12.363	3.004	2.641	2.126		
	ae18	18.687	11.780	3.252	2.945	1.559		
	wb2axip	38.667	15.045	4.297	1.180	2.188		
	usb_device	169.281	16.026	4.838	1.225	5.905		
	fpu	321.501	21.878	5.862	1.199	9.246		
	LSU	55.532	24.155	5.296	1.117	2.371		
	vga_lcd	46.886	16.284	5.896	1.131	2.222		
	SmallQuadBoom	903.420	43.565	7.397	2.886	25.861		
	SmallBoom	709.360	44.576	7.516	1.242	20.769		
	BoomCore	590.145	67.807	7.204	2.812	20.486		
	or1200	3.649	37.710	2.639	2.554	0.906		
	sparc	535.247	112.374	6.390	2.687	9.716		
	Average	285.550	35.297	5.299	1.968	8.613		
	Ratio	33.154	4.098	0.615	0.229	1.000		

(a) Runtime comparison.

(b) Illustration of runtime speedup.

- We propose GraphCAD, an end-to-end GNN framework to predict crosstalk-affected delays by jointly modeling coupling effects and overlapping nets.
- We combine heterogeneous graph learning and transformers to map aggressor-victim interactions and analyze their overlapping timing windows.
- A curriculum learning strategy is implemented to handle complex multi-aggressor scenarios progressively.
- Experimental studies validate the framework through tests on 7nm technology open-source designs, demonstrating improved accuracy and efficiency.