
GraphCAD: Leveraging Graph Neural Networks for
Accuracy Prediction Handling Crosstalk-affected Delays

Fangzhou Liu1, Guannan Guo2, Yuyang Ye1, Ziyi Wang1, Wenjie Fu3,
Weihua Sheng2, Bei Yu1

1The Chinese University of Hong Kong, Hong Kong SAR
2Huawei Design Automation Lab, Hong Kong SAR
3HiSilicon Technologies Co., Shanghai

1 Introduction

2 Algorithm

3 Results

4 Conclusion

2/16

Outline

2/16

Crosstalk challenges:
• Scaling: Wire length-to-width adjustments → increased coupling capacitance.

(a) Transition slowdown or speedup (b) Noise bump

Existing Methods:
• Traditional simulations: Challenges in multi-input transfer functions & holding

resistance; Issues with logic correlation; Computationally intensive

• Previous learning-based works: Focus on only RC paratistics;1 Lack of coupling
features or timing features;2 Limited methodology.

1Andrew B Kahng, Mulong Luo, and Siddhartha Nath (2015). “SI for free: machine learning of
interconnect coupling delay and transition effects”. In: Proc. SLIP, pp. 1–8.

2Yuyang Ye et al. (2023). “Fast and accurate wire timing estimation based on graph learning”.
In: Proc. DATE. IEEE, pp. 1–6. 3/163/16

Background

3/16

RC Tree

Victim B

Aggressor A

Aggressor C

Timing Window

Path 1
arrivals

Overlap!

Path 2
arrivals

Overlap!

Aggressor A
window

Aggressor C
window

Driver

Receiver

Primary causes of crosstalk noise:

1 Coupling effect;

2 Timing window overlapping between nets.

4/16

Motivation

4/16

Algorithm

5/16

Victim

Aggressor 1

Aggressor 2

driver

receiver

ground
capacitors
coupling

capacitors

wire path

Description of node and path features.
Feature Description

fn1 Capacitance values
fn2 Number of input nodes
fn3 Number of output nodes
fn4 Total input capacitance
fn5 Total output capacitance
fn6 Number of connected resistors
fn7 Total input resistance
fn8 Total output resistance
fn9 Ratio of coupling-to-total capacitance
fn10 Indicates if it is a victim net
fn11 List of corresponding aggressors
fp1 Incremental delay for each wire path
fp2 Minimum transition time for driver/receiver
fp3 Maximum transition time for driver/receiver
fp4 Minimum arrival time for driver/receiver
fp5 Maximum arrival time for driver/receiver

Graph construction:
• Nodes: drivers, receivers, and capacitances; Edges: resistances.
• HGAT input: a heterogeneous graph G = ⟨V, E⟩;

Xdict : {"coup" : xcoup, "cap" : xcap . . .}; Edict:{("cap", "coup") : ecap, coup . . .}.
• Graph transformer input: G = (E ,V,P), where P denotes wire paths; a node feature

matrix X, a path feature matrix P and a weighted adjacency matrix A = [ai,j].

Predition objective:
• twire = g(fn, fp; θg); ttrans = h(fn, fp; θh) 6/16

Data Preparation

6/16

Wire
Delay

Slew

Head 1

Head 2

HGAT

V

A1

HANConv
K Layers

…

A1

V

Graph
Transformer

GCN/
Transformer
K Layers

…

…
A1

V

…

…
A1

V
A1

V

GAT
K Layers

MLP

Overview of GraphCAD.

7/16

Overview

7/16

Intra-relation information encoding:
• Learn the weight among neighboring nodes of the same type:

eΘu,v = σ(a⊤Θ · [hi||hj]). (1)

• Normalize:

αΘ
u,v = softmax(eΘu,v) =

exp(eΘu,v)∑
k∈NΘ(u) exp(eu,k)

. (2)

• The relation-based embedding of node u:

zΘu = σ(
∑

v∈NΘ(u)

αΘ
u,vhv). (3)

8/16

HGAT Model: Coupling Effect Analysis

8/16

Aggregation of relation-level information:
• Average the importance of all the relation-level node embeddings:

eΘi =
1

|VΘi |
∑

u∈VΘi

q⊤ · tanh(W × zΘi
u + b). (4)

• Normalize:

αΘi = softmax(eΘi) =
exp(eΘi)∑K
j=1 exp(eΘj)

. (5)

• Fuse the relation-level node embeddings to generate the final embeddings:

Z =

K∑
i=1

αΘi × ZΘi . (6)

• Global pooling and output:

yHGAT = GlobalPool(Z)

= [(
1
|V|

∑
u∈V

zu)||(
1

|Vcoup|
∑

v∈Vcoup

f (xv))].
(7)

9/16

HGAT Model: Coupling Effect Analysis

9/16

• GraphSAGE: x(l+1)
v = ReLU

(
Norm

(
W(l) · MEAN

(
{x(l)

v } ∪ {x(l)
u : u ∈ N (v)}

)))
• Transformer: x′v = TransformerEncoder(x(L1)

v ,L2)

• GAT layers: x′′v =
∑

u∈NC(v) αvuWxu

A2

V

A1

check
overlap

wire path
representations

h⃗1h⃗1

h⃗2h⃗2

h⃗3h⃗3

h⃗4h⃗4

attention layers

other
aggressors

⃗α 22⃗α 22

⃗α 12⃗α 12

⃗α 24⃗α 24

concat/avg ⃗x′ ′ 2⃗x′ ′ 2

⃗α 33⃗α 33

⃗α 34⃗α 34

concat/avg ⃗x′ ′ 3⃗x′ ′ 3

h⃗1h⃗1

h⃗4h⃗4

h⃗2h⃗2

h⃗4h⃗4 h⃗3h⃗3

Graph Transformer model incorporating overlapping net information.
10/16

Graph transformer model: Overlapping Net Analysis

10/16

simple

C1C1
V1V1

V2V2

complex

minimum

maximum

V1V1
V2V2

C1C1

Timing window overlap Curriculum learning

• Customized loss function:

L(θ) =
1
N

N∑
i=1

C · L(yi, f (xi; θ)), (8)

11/16

Curriculum Learning Mechanism

11/16

simple

C1C1
V1V1

V2V2

complex

minimum

maximum

V1V1
V2V2

C1C1

Timing window overlap Curriculum learning

C2C2

A1A1

V1V1

V2V2

V1V1
V2V2

A1A1

C2C2

• Customized loss function:

L(θ) =
1
N

N∑
i=1

C · L(yi, f (xi; θ)), (8)

Curriculum Learning Mechanism

11/16

simple

C1C1
V1V1

V2V2

complex

minimum

maximum

V1V1
V2V2

C1C1

Timing window overlap Curriculum learning

C2C2

A1A1

V1V1

V2V2

V1V1
V2V2

A1A1

C2C2

C3C3

A1A1

A2A2

V1V1
V2V2

A2A2

V1V1
V2V2

A1A1

C3C3

• Customized loss function:

L(θ) =
1
N

N∑
i=1

C · L(yi, f (xi; θ)), (8)

Curriculum Learning Mechanism

11/16

Results

12/16

Dataset preparation:
• Technology library: Open-source ASAP7,

• Synthesis & PnR: Design Compiler → Innovus,

• Feature extraction: PrimeTime non-SI mode,

• Ground truth: HSPICE.

Configurations:
• GraphCAD: pyg and pytorch, spef-parser(cpp),

• dynamic adjusted learning rate from 0.01 to 0.006,

• batch size: 128, 150 epochs,

• training: 20 hours on a single GPU.

13/16

Experimental setting

13/16

Table: Comparison of estimation errors against HSPICE results.

Benchmarks RC-VA
Predicted Wire Delay Predicted Slew at Receiver

PrimeTime NetTiming3 MLP4 GraphCAD PrimeTime NetTiming MLP GraphCAD

wdsp 19 14.89% 31.32% 37.37% 25.66% 47.36% 30.04% 80.80% 26.03%
ae18 11 13.27% 23.39% 24.34% 16.42% 35.95% 35.71% 72.96% 34.82%

wb2axip 22 14.45% 24.37% 22.14% 12.51% 17.26% 22.54% 33.75% 10.17%
usb_device 99 14.91% 22.38% 31.21% 21.18% 30.46% 28.37% 53.25% 27.93%

fpu 183 10.19% 23.00% 29.05% 20.25% 21.82% 34.64% 39.79% 20.84%
LSU 31 7.93% 22.83% 41.00% 18.31% 39.30% 40.03% 80.16% 36.81%

vga_lcd 24 15.82% 32.18% 65.24% 19.59% 43.70% 24.33% 97.15% 20.45%
SmallQuadBoom 511 6.62% 26.43% 27.71% 24.07% 16.72% 36.18% 29.63% 22.28%

SmallBoom 402 8.44% 25.64% 34.83% 21.92% 20.26% 35.08% 29.75% 23.52%
BoomCore 326 11.41% 31.92% 33.50% 24.91% 16.84% 45.77% 25.57% 24.05%

or1200 2 12.36% 14.15% 76.56% 9.42% 15.86% 47.58% 42.14% 21.79%
sparc 174 10.30% 26.30% 29.00% 24.93% 19.47% 37.44% 28.72% 23.48%

Average - 11.72% 25.33% 37.66% 19.93% 27.08% 34.81% 51.14% 24.35%
Delta - -8.21% 5.40% 17.73% 0 2.74% 10.46% 26.79% 0

3Yuyang Ye et al. (2023). “Fast and accurate wire timing estimation based on graph learning”.
In: Proc. DATE. IEEE, pp. 1–6.

4Leilei Jin et al. (2024). “A Crosstalk-Aware Timing Prediction Method in Routing”. In: arXiv
preprint arXiv:2403.04145. 14/16

Overall Performance

14/16

(a) Runtime comparison.

0 50 100 150

33.16

145.13

53.89

8.09

Speedup (x)

PrimeTime

NetTiming

MLP

GraphCAD

(b) Illustration of runtime speedup.

15/16

Runtime Comparison

15/16

• We propose GraphCAD, an end-to-end GNN framework to predict crosstalk-affected
delays by jointly modeling coupling effects and overlapping nets.

• We combine heterogeneous graph learning and transformers to map
aggressor-victim interactions and analyze their overlapping timing windows.

• A curriculum learning strategy is implemented to handle complex multi-aggressor
scenarios progressively.

• Experimental studies validate the framework through tests on 7nm technology
open-source designs, demonstrating improved accuracy and efficiency.

16/16

Conclusion

16/16

	Introduction
	Algorithm
	Results
	Conclusion

