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Abstract
As chip fabrication technology advances, the capacitive effects be-
tweenwires have become increasingly pronounced,making crosstalk-
induced incremental delay a serious issue. Traditional static timing
analysis involves complex and iterative calculations through timing
windows, requiring precise alignment of aggressor and victim nets,
along with delay and slew estimations, which significantly increase
runtime and licensing costs. In our work, we develop a Graph Neural
Network framework to predict crosstalk-affected delays, focusing on
the impacts of the coupling effect and overlapping nets. Moreover,
we employ a curriculum learning strategy that gradually integrates
aggressors with victims, improving model convergence through pro-
gressively complex scenarios. Experimental results show that our
framework precisely predicts crosstalk-affected delays, matching
commercial tools’ performance with a fivefold speedup.

CCS Concepts
• Hardware → Transition-based timing analysis; Modeling
and parameter extraction.
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1 Introduction
As feature sizes shrink with advancing technologies, wires have
been brought closer to each other. Despite reductions in wire width,
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Figure 1: Primary causes of crosstalk noise.

heights have not proportionally decreased to avoid significant in-
creases in resistance. This has enhanced capacitive coupling between
wires, leading to increased crosstalk noise and delta delays, affecting
circuit performance [1]. As illustrated in Figure 1, voltage changes
in Dnet A generate currents in Dnet B through coupling capacitors,
designating B as the “Victim” and A as the “Aggressor.” The timing
window [𝑇min,𝑇max] represents the interval when voltage shifts are
possible. If the timing windows of the victim and aggressor overlap,
the aggressor can induce crosstalk in the victim.

In highly congested integrated circuits, estimating crosstalk-
affected delays is crucial to precise timing closure. Simulation-
based crosstalk analysis poses substantial challenges due to the
complex nature of delay computations, which involve several intri-
cate steps [2]: initially identifying and filtering minor net couplings
post-routing, then calculating noise-free delays with all coupling
capacitances grounded. The most crucial part is an iterative timing-
window analysis, where noise from aggressor nets is calculated
and added to victim nets to estimate worst-case delays. This in-
cludes: 1) Computing the noise bump for each aggressor. 2) Filtering
these bumps based on peak values and logic correlation. 3) Align-
ing all bumps to create a combined noise waveform. 4) Overlaying
this combined noise onto the noise-free waveform to determine
the worst-case delay. 5) Adjusting timing windows based on these
extremes for subsequent iterations.

Although classical methods utilizing iterative calculations through
timing windows are accurate, recent studies have shifted towards
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machine learning (ML) models for fast prediction. Kahng et al. [3]
adapt support vector machine and artificial neural network tech-
niques for crosstalk prediction. They focus on key electrical and
logical structure parameters that cause timing divergence between
SI and non-SI modes within commercial tools. XT-PRAGGMA [4]
employs ML techniques to eliminate false aggressors and accurately
predict crosstalk-affected delays. Jin et al. [5] introduce a two-step
ML approach that predicts delay noise by integrating physically
relevant and timing-specific data, such as interconnect width and
net arrival times, facilitating rapid crosstalk prediction without the
need for post-route netlists and parasitic data.

However, these studies do not sufficiently analyze and manage
timing windows compared to classical methods, which compromise
the accuracy of predictions to some extent. [6] outlines two critical
issues affecting the analysis of timing windows, which inform the
design considerations for our work:
(1) Coupling effect: Parasitic cross-coupling between adjacent

nets can cause transition slowdowns or speedups (known as
delta delays) or voltage glitches (known as bumps), triggered by
charge transfers that cause voltage fluctuations. The left part
of Figure 1 displays a model of cross-coupled nets, featuring
a victim net and two aggressor nets. The crosstalk from the
aggressor nets, transmitted through four coupling capacitors,
impacts the victim net. Note that the coupling capacitors and
RC values already account for the distance between the nets.

(2) Overlapping net: The right part of Figure 1 analyzes the tim-
ing windows of each net, where a delta delay occurs only when
the arrival windows of the aggressor and victim paths overlap.
Commercial tools utilize several methods to assess overlap re-
lationships. The example in Figure 1 uses the “all path edges”
mode to independently evaluate the victim wire path’s early
or late arrival times. For maximum-delay analysis, the victim
net is impacted by aggressor nets A and C due to overlapping
late edges on at least one path. Similarly, for minimum delay
analysis, the victim is affected solely by aggressor C, excluding
the influence of aggressor A based on the overlap.
In addressing crosstalk analysis challenges, we are inspired by

wire timing prediction research such as [7]. This research motivates
us to use graph neural networks (GNNs) to accurately predict delays
caused by crosstalk by effectively handling coupling capacitor fea-
tures and timing windows, thus avoiding classical time-consuming
and costly computations or simulations. Additionally, given the
complexity of analyzing all potential aggressors on a victim during
overlapping net analysis, we innovatively propose a curriculum
learning approach as discussed in [8]. This method initially targets
the most significant aggressors and incrementally includes less im-
pactful ones, thereby optimizing model training by systematically
escalating complexity. Building on this, we introduce the Graph-
CAD framework, summarizing its key contributions as follows:
• An end-to-end framework is developed to predict crosstalk-
affected delays, considering coupling effects and overlapping
net analysis.

• We introduce a customized GNN that applies heterogeneous
graph learning for analyzing the impact of coupling capacitance
on crosstalk, and uses a graph transformer model to capture key
features and map out relationships among wire paths.

A

B

C

(a) delay noise

A

B

(b) function noise

Figure 2: Crosstalk delay effects. Note that greater timing
window overlap indicates stronger crosstalk.

• We apply a curriculum learning strategy that targets dynam-
ics between victim nets and multiple aggressor nets, smoothly
progressing the model from simple to complex graph challenges.

• Experimental studies conducted on extensive open-source de-
signs at the 7nm node validate our framework’s efficiency and
accuracy in predicting crosstalk effects.

2 Preliminaries
2.1 Crosstalk Analysis
Crosstalk significantly impacts signal integrity (SI) as it involves
unwanted electrical interactions between two or more physically
adjacent nets due to capacitive cross-coupling. In this context, a net
affected by such interference is termed a “victim net,” while a net
causing these effects is known as an “aggressor net.” As depicted
in Figure 2(a), voltage fluctuations in aggressor A/C can influence
victim B’s voltage, altering the waveform and introducing delay
variations known as delay noise. Moreover, Figure 2(b) illustrates
that when victim B’s voltage is stable, changes in the aggressor’s
voltage can cause a bump in the victim’s circuit. If this bump is
sufficiently strong, it might alter voltage levels in the victim’s circuit,
potentially causing execution errors known as function noise. In this
paper, we exclusively focus on delay noise, as the calculations for
function noise typically depend on the timing window determined
by delay noise calculations.

In classical algorithms, the calculation of delta delay considers
the worst-case impact of aggressors on a victim. We introduce the
concept of a timing window to identify which aggressors alter volt-
age simultaneously with the victim and influence the delta delay
calculation. Notably, the computation of the timing window also
depends on the delta delay itself. For instance, if the timing win-
dow for the current victim’s input voltage is [𝑇min,𝑇max], and the
net’s delay is [delaymin, delaymax], the next stage’s input voltage
timing window is calculated as [𝑇min + delaymin,𝑇max + delaymax].
Thus, the calculations of delta delay and the timing window are
iterative, starting with an infinite timing window and considering
noise from all neighboring aggressors. Each iteration adjusts and
excludes some aggressors based on the previous timing window,
gradually narrowing it until convergence. Determining the worst-
case aggressors within this window involves a complex nonlinear
optimization, usually solved approximately. First, calculate the noise
(bump) each aggressor produces when acting alone on a fixed volt-
age victim, then sum all bumps to obtain the total noise. Next, this
total noise is superimposed on the victim’s noise-free waveform to
analyze the worst-case noise overlay effect, thereby approximating
the delta delay caused by aggressors in the worst case. Note that
the likelihood of crosstalk between the victim net and aggressor
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Figure 3: Illustration of RC-VA graph. Drivers, receivers, and
capacitances serve as nodes; resistances serve as edges.

nets increases with greater overlap in their timing windows, due to
intensified signal interactions.

2.2 Graph Neural Network
Graph neural networks have emerged as a powerful framework for
graph data analysis, widely recognized for their iterative message-
passing scheme [9]. In a GNN, each node 𝑢 in a graph 𝐺 = ⟨V,E⟩
updates its embedding 𝒉(𝑘 )𝑢 iteratively. The update during each pass
is based on messages aggregated from the node’s neighbors N(𝑢):

𝒉 (𝑘+1)
𝑢 = UPDATE(𝑘 )

(
𝒉 (𝑘 )
𝑢 ,AGGREGATE(𝑘 ) (𝒉 (𝑘 )

𝑣 , ∀𝑣 ∈ N(𝑢 ) )
)

= UPDATE(𝑘 )
(
𝒉 (𝑘 )
𝑢 ,𝒎 (𝑘 )

N(𝑢)

)
,

(1)

where UPDATE and AGGREGATE are differentiable functions and
𝒎N(𝑢 ) means the “message” aggregated from 𝑢’s graph neighbor-
hood N(𝑢). After 𝐾 iterations, the final node embedding for all
nodes 𝑢 in V is 𝒛𝑢 = 𝒉𝐾𝑢 .

This approach has shown significant efficacy in learning com-
plex graph structures and has recently become popular in the EDA
community, as circuits can be effectively modeled as graphs [10].

2.3 Problem Formulation
We aim to create a fast and accurate framework for estimating
crosstalk-affected delays in complex RC net structures.

Problem 1 (Crosstalk-Affected Timing Estimation). Given complex
RC nets with victim and aggressor configurations, this problem
seeks to assess their coupling effects and net overlaps to accurately
forecast wire delay and slew at the victim net’s sink pin.

3 Algorithm
3.1 Overview
Before diving into the algorithm details, we begin by giving an
overview of our proposed GraphCAD framework, depicted in Fig-
ure 4. Our approach consists of three primary modules:
• A heterogeneous graph attention network (HGAT) model for
modeling coupling effects;

• A graph transformer network (GraphTransformer) model for
wire path feature and overlapping net analysis;

• A multi-head neural network that utilizes a multilayer Percep-
tron (MLP) to integrate embeddings and perform diverse objec-
tive readouts.
Starting from the RC tree extracted from the routed circuit, we

identify victim-aggressor pairs and construct their corresponding
graph. The HGAT model uses a bi-level attention mechanism to
deeply explore the heterogeneity of RC trees, focusing specifically
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Figure 4: Overview of GraphCAD.

on coupler information. The Graph Transformer model employs
GraphSAGE to extract local features by aggregating edge-based
information and uses a Transformer to integrate global structural
data, capturing all capacitance and resistance within the RC net. It
further incorporates GAT layers to specifically analyze wire path
interactions, especially how aggressor wire paths impact victim
wire path timing windows. The outputs of the HGAT and Graph-
Transformer models are then concatenated and processed through
MLP layers to predict wire delay and sink pin’s slew.

3.2 Data Representation

Graph Construction. The RC tree is derived from the standard
parasitic exchange format (SPEF) file after routing. Subsequently,
we identify pairs of victim and aggressor nets, and construct a
heterogeneous graph G = ⟨V,E⟩, as illustrated in Figure 3. This
graph is termed the RC-VA graph, where the node setV encompasses
drivers, receivers, ground capacitors, and coupling capacitors, while
its edge set E consists of resistors that connect these various node
types. In this graph, the term “driver” refers to the source pin of
each net, whereas “receiver” denotes the sink pin. Additionally, a
“wire path” is defined as the route from a driver to a receiver within
a single net, characterized by the number of receivers it includes.

For different model training, which is detailed in Section 3.3,
the graph G is initially transformed into two distinct data struc-
tures. For the input to the heterogeneous graph attention network
(HGAT) model, the heterogeneous graph is treated as a whole and
represented by a node feature dictionary 𝑿dict and an edge index
dictionary 𝑬dict. 𝑿dict includes node features for each node type,{
"coup" : 𝒙coup, "cap" : 𝒙cap, . . .

}
, and the 𝑬dict contains local adja-

cency information for each edge type,
{
("cap", "coup") : 𝒆cap, coup, . . .

}
.

Conversely, for the input to the Graph Transformer model, the het-
erogeneous graph G is decoupled and split into multiple isomor-
phic subgraphs for both victim and aggressor nets, represented as
G = (E,V,P) where P denotes wire paths. Each subgraph treats
nodes and edges uniformly without differentiation by type and is
described by a node feature matrix 𝑿 , a path feature matrix 𝑷 for
P and a weighted adjacency matrix 𝑨 = [𝑎𝑖, 𝑗 ], with 𝑎𝑖, 𝑗 indicating
the resistance between nodes 𝑣𝑖 and 𝑣 𝑗 .
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Table 1: Description of node and path features.

Feature Description

𝑓𝑛1 Capacitance values
𝑓𝑛2 Number of input nodes
𝑓𝑛3 Number of output nodes
𝑓𝑛4 Total input capacitance
𝑓𝑛5 Total output capacitance
𝑓𝑛6 Number of connected resistors
𝑓𝑛7 Total input resistance
𝑓𝑛8 Total output resistance
𝑓𝑛9 Ratio of coupling-to-total capacitance
𝑓𝑛10 Indicates if it is a victim net
𝑓𝑛11 List of corresponding aggressors
𝑓𝑝1 Incremental delay for each wire path
𝑓𝑝2 Minimum transition time for driver/receiver
𝑓𝑝3 Maximum transition time for driver/receiver
𝑓𝑝4 Minimum arrival time for driver/receiver
𝑓𝑝5 Maximum arrival time for driver/receiver

Feature Extraction. Let 𝒇𝑛 = (𝑓𝑛1, 𝑓𝑛2, . . . , 𝑓𝑛11) represent the
node features obtained from the SPEF file, and𝒇𝑝 = (𝑓𝑝1, 𝑓𝑝2, . . . , 𝑓𝑝5)
represent the path features sourced from an industrial standard timer
in Non-SI mode. These features are listed in Table 1.

Given that negative coupling increases delay while positive cou-
pling decreases it, our experiments are specifically designed to focus
on a primary scenario. We examine cases where the rise time of
signals in the victim net aligns with the fall time of signals in the
aggressor nets, implicitly addressing its inverse as well. Addition-
ally, we utilize the composite current source (CCS) model and its
accompanying technology library for feature extraction. This model
effectively handles non-linear effects and various switching condi-
tions, including signal rise and fall times, which makes the previ-
ously suggested Elmoremodel unnecessary, as referenced in [7]. Our
method specifically addresses the delta delay caused by crosstalk
between the driver and receivers, intentionally omitting unrelated
characteristics like cell load strength from the technology library.
This focused approach enhances our analysis of crosstalk effects
and their impact on signal integrity, minimizing the interference
from process variations.

We predict the total wire delay and receiver’s slew affected by
crosstalk using neural network models:

𝑡wire = 𝑔(𝒇𝑛,𝒇𝑝 ;𝜃𝑔), (2)
𝑡trans = ℎ(𝒇𝑛,𝒇𝑝 ;𝜃ℎ), (3)

where𝑔 andℎ are functions modeled by neural networks, parameter-
ized by𝜃𝑔 and𝜃ℎ respectively. By analyzing non-linear dependencies
between node features (𝒇𝑛) and path features (𝒇𝑝 ), these models
aim to isolate and quantify changes, thereby accurately predicting
the crosstalk’s impact on both wire delays and receiver’s slew.

Ground truth. To simulate crosstalk effects accurately, we perform
dynamic SPICE simulations, modeling each wire path from driver
to receiver. This allows precise measurements of wire delay 𝒅𝑔
and receiver’s slew 𝒕𝑔 . Aligning with our feature extraction, we
focus solely on the victim net at maximum rise and the aggressor at
maximum fall.

3.3 GraphCAD Framework Details

HGAT Model: Coupling Effect Analysis. As mentioned before,
we model the RC tree as heterogeneous graphs with diverse node
types, where neighboring nodeswith different types indicate distinct
relationships. Observing that different node types and relationships
contribute unequally to the coupling effects, we propose to employ
the heterogeneous graph attention (HGAT) model [11] to encode
our RC-VA graph for coupling effect analysis effectively.

We begin with the formal definition of relation:

Definition 1 (Relation). A relation Θ is defined as a pair of node
types in the form of 𝑡𝑖 → 𝑡 𝑗 , which describes a composite relation
between connected objects 𝑛1 of type 𝑡𝑖 and 𝑛2 of type 𝑡 𝑗 .

Our HGAT model follows the two-level message aggregation
scheme that first encodes intra-relation information and then aggre-
gates relation-level information. Initially, we leverage self-attention
[12] to learn the weight among neighboring nodes of the same type.
Given a node pair (u, v) which is connected via relationship Θ, the
node-level attention 𝑒Θ representing how important node v is for
node u can learn the importance 𝑒Θ𝑢,𝑣 as:

𝑒Θ𝑢,𝑣 = 𝜎 (𝑎⊤Θ · [ℎ𝑖 | |ℎ 𝑗 ]). (4)

Here ℎ𝑢 is the embedding of node u, 𝜎 is the activation function,
𝑎Θ is a learnable attention vector for relation Θ, and | | denotes
the concatenate operation. Notably, 𝑎Θ is shared for all node pairs
of relation Θ. To ensure comparability of these importance scores
across different nodes, we normalize them using softmax:

𝛼Θ𝑢,𝑣 = softmax(𝑒Θ𝑢,𝑣) =
exp(𝑒Θ𝑢,𝑣)∑

𝑘∈NΘ (𝑢 ) exp(𝑒𝑢,𝑘 )
, (5)

where NΘ (𝑣) is the set of neighboring nodes of 𝑣 related by Θ.
Then the relation-based embedding of node 𝑢 can be produced

by the weighted linear combination of the neighboring nodes of
relation Θ, which can be written as:

𝑧Θ𝑢 = 𝜎 (
∑︁

𝑣∈NΘ (𝑢 )
𝛼Θ𝑢,𝑣ℎ𝑣), (6)

where 𝑧Θ𝑢 represents the embedding of node u for relation Θ. Given
the relation set {Θ1, · · · ,Θ𝐾 }, the node-level aggregation scheme
produces K groups of relation-level node embeddings, denoted as
{𝑍Θ1 , · · · , 𝑍Θ𝐾 }.

To generate more comprehensive node embeddings, we further
apply an additional attention mechanism to learn the importance of
different relation-level embeddings and fuse them into a single em-
bedding. To begin with, we first transform relation-level embeddings
through a nonlinear transformation, e.g., an MLP layer. Following
this, the importance of a relation-level embedding is measured as
the similarity of the transformed embedding with a semantic-level
attention vector 𝑞. Notably, 𝑞 is shared for all nodes and relations.
To represent the importance of each relation Θ𝑖 , we average the
importance of all the relation-level node embeddings belonging to
Θ𝑖 , which can be written as follows:

𝑒Θ𝑖 =
1

|VΘ𝑖 |
∑︁

𝑢∈VΘ𝑖

𝒒⊤ · 𝑡𝑎𝑛ℎ(𝑊 × 𝑧Θ𝑖𝑢 + 𝑏), (7)
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where W is the weight matrix, b is the bias vector, q is the relation-
level attention vector, and VΘ𝑖 represents the set of nodes belonging
to relation Θ𝑖 . Similarly, the above relation-level importance scores
are normalized using the softmax function:

𝛼Θ𝑖 = softmax(𝑒Θ𝑖 ) =
exp(𝑒Θ𝑖 )∑𝐾
𝑗=1 exp(𝑒Θ𝑗 )

, (8)

where K denotes the number of relations.With the above normalized
importance scores, we can fuse the relation-level node embeddings
to generate the final embeddings as follows:

𝑍 =

𝐾∑︁
𝑖=1

𝛼Θ𝑖 × 𝑍Θ𝑖 . (9)

After propagation through the HANConv layers, a global pool-
ing layer is applied to the final node embeddings to summarize
information across the graph:

𝒚HGAT = 𝐺𝑙𝑜𝑏𝑎𝑙𝑃𝑜𝑜𝑙 (𝑍 )

= [( 1
|V|

∑︁
𝑢∈V

𝑧𝑢 ) | | (
1

|V𝑐𝑜𝑢𝑝 |
∑︁

𝑣∈V𝑐𝑜𝑢𝑝
𝑓 (𝑥𝑣))], (10)

where 𝑧𝑢 denotes the generated node embedding for node u, V𝑐𝑜𝑢𝑝
represents the set of coupler nodes, | | denotes the concatenate oper-
ation, and 𝑓 is an MLP deep learning model. Notably, we add a skip
connection to emphasize the pivotal role of coupler nodes.

Graph Transformer: Overlapping Net Analysis. Despite the
HGAT model’s focus on utilizing diverse node features, it falls short
in leveraging timing path information. Inspired by [7], we introduce
a Graph Transformer model that combines GraphSAGE and Trans-
former modules to efficiently capture local and global structures
from wire paths. We then use a pooling module to integrate these
paths’ representations and establish virtual connections based on
temporal overlaps. These connections, indicating overlapping nets,
are processed using graph attention network (GAT) layers to simu-
late path interactions. Finally, we aggregate the enhanced features
of the victim net to produce the final aggregated feature.

The process begins by applying GraphSAGE convolutions to node
features of decomposed isomorphic graphs representing victim and
aggressor wire paths. Recall that for this model’s input, coupler
nodes are removed, and each wire path is processed independently.
This process specifically focuses on learning local structures by
aggregating features from neighboring nodes, based on the edge
weights𝑨 = [𝑎𝑖, 𝑗 ] (the resistance values between nodes), to capture
key connectivity patterns. Each node’s feature vector is updated
through 𝐿1 layers of GraphSAGE as follows:

𝒙 (𝑙+1)
𝑣 = ReLU

(
Norm

(
𝑾 (𝑙 ) ·MEAN

(
{𝒙 (𝑙 )
𝑣 } ∪ {𝒙 (𝑙 )

𝑢 : 𝑢 ∈ N(𝑣)}
)))

,

(11)
where 𝒙 (𝑙 )

𝑣 denotes the feature vector of node 𝑣 at layer 𝑙 (𝑙 < 𝐿1),
and N(𝑣) denotes the set of neighboring nodes of 𝑣 in the graph.
Note that for the first layer, 𝒙 (0)

𝑣 is the original node feature 𝒙𝑣 ∈ 𝑿
defined in Section 3.2.

As we know that GraphSAGE suffers from performance degra-
dation due to oversmoothing when increasing model depth [13],
and its narrow receptive field limits capturing global dependencies.
To address these issues, we integrate a multi-head self-attention
mechanism from transformers after the GraphSAGE layers. Our
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Figure 5: Graph Transformer model incorporating overlap-
ping net information.

model does not use explicit position embeddings but learns to infer
positional relationships implicitly during the learning process:

𝒙′𝑣 = TransformerEncoder(𝒙 (𝐿1 )
𝑣 , 𝐿2), (12)

where 𝒙 (𝐿1 )
𝑣 denotes the node embeddings from the final Graph-

SAGE layer, and 𝒙′𝑣 is the output after processing through 𝐿2 trans-
former layers, enhancing the model’s capability to capture both
local and global dependencies.

Subsequently, we utilize a pooling module to integrate node
representations 𝑿𝐿1+𝐿2 = {𝒙 (𝐿1+𝐿2 )

𝑖
| 𝑖 ∈ V} with wire path

features 𝑷 = {𝒑𝑖 | 𝑖 ∈ P}, forming wire path representations
𝑯 = {𝒉𝑖 | 𝑖 ∈ P}. As shown in Figure 5, after obtaining 𝑯 , we
perform an overlapping check between victim and aggressor wire
paths, adhering to the “all-path-edges” concept mentioned in [6].
We establish the timing edges based on the minimum and maximum
arrival times at each wire path’s receiver, which are saved in 𝑷 . The
timing window on the receiver is considered because it reflects the
total duration for the signal to traverse from the driver through the
entire net to the receiver’s endpoint. In minimum delay analysis, if
the early edge 𝑡early of a victim wire path overlaps with the timing
window Δ𝑡agg of any aggressor, i.e., 𝑡early ∩Δ𝑡agg ≠ ∅, the paths are
considered correlated. Similarly, in maximum delay analysis, over-
lap between the late edge 𝑡late and Δ𝑡agg also indicates a correlation,
i.e., 𝑡late ∩ Δ𝑡agg ≠ ∅. Thus, the correlation between a victim and
an aggressor net is established if either condition is met, expressed
as (𝑡early ∩ Δ𝑡agg) ∪ (𝑡late ∩ Δ𝑡agg) ≠ ∅. We denote the set of all
correlated pairs as C, which includes any pair (𝑣,A𝑣) where 𝑣 is a
victim wire path andA𝑣 contains all aggressor wire paths correlated
with 𝑣 . To allow for a more flexible determination of overlap and to
mitigate close but non-overlapping edges, we empirically introduce
extra padding to the timing edges.

Recall that in the Graph Transformer input stage, aggressor and
victim wire paths are considered unconnected; therefore, for those
crosstalking victim and aggressor wire paths in C, we introduce a vir-
tual edge. Subsequently, we apply GAT layers to calculate weighted
features between each victim wire path and all its crosstalking ag-
gressor wire paths in C, resulting in a new wire path representation
enriched with critical information. Thus, even if two wire paths are
not directly connected, the features of an unconnected aggressor
can influence the victim through attention-weighted updates.

𝒙′′𝑣 =
∑︁

𝑢∈NC (𝑣)
𝛼𝑣𝑢𝑾𝒙𝑢 , (13)
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where NC (𝑣) denotes the set of aggressor paths for victim 𝑣 , 𝛼𝑣𝑢
are the attention coefficients, andW is a learnable weight matrix.

After processing, features for each pair (𝑣,A𝑣) in C are concate-
nated and averaged to produce the final model output𝒚GTrans, which
is the mean of concatenated features {𝒙′′𝑣,𝑎 : (𝑣,A𝑣) ∈ C}. This out-
put vector 𝒚GTrans summarizes key features and interactions for
crosstalk-affected delay predictions.

Multi-Head Prediction. Finally, the multi-head prediction model
uses outputs from the HGAT and Graph Transformer models to
predict crosstalk-affected wire delays and receiver’s slew through
dedicated prediction heads. The model includes:
• Combined Feature Representation:

𝒚combined = [𝒚HGAT ∥ 𝒚GTrans], (14)

where ∥ denotes the concatenation operation.
• Prediction Heads and Regularization:

𝒅𝑒 = Linear(𝒚combined) → LeakyReLU → Dropout → Linear,
(15)

𝒕𝑒 = Linear(𝒚combined) → LeakyReLU → Dropout → Linear.
(16)

The final outputs, 𝒅𝑒 and 𝒕𝑒 , quantify crosstalk-affected delays,
leveraging the concatenated features for enhanced model accuracy.

3.4 Curriculum Learning Mechanism
Crosstalk analysis is a complex, iterative process that involves ex-
amining the interactions between a victim net and its aggressor
nets. The impact of the aggressor nets on the victim net can alter
the timing performance of the victim net, which, in turn, influences
the aggressor nets. To address the above challenge, we propose to
employ the curriculum learning mechanism [8] during our training
stage. Given an RC tree, we initially concentrate solely on the victim
net and gradually incorporate the impact of aggressor nets based
on their criticality. Here we define the criticality of an aggressor net
based on the “all-path-edge” concept [6] as its degree of correlation
with the victim net, specifically measured by the number of overlaps
between the aggressor’s timing window and the victim’s timing
edges. As shown in Figure 6, 𝐴1 is deemed more critical than 𝐴2
because it has two timing window overlaps with the victim’s timing
edges, compared to only one for 𝐴2. Building on this approach, our
training flow boosts performance by prioritizing critical aggressor
nets while incrementally increasing the complexity.

During training, as data is input, we progressively decompose
each RC-VA graph—initially focusing on the victim alone, then
adding the primary aggressor, followed by the secondary aggressor,
and so forth. See Figure 6 (right) for a visual representation:
• Phase 1: Start with the victim net alone. (𝐶1)
• Phase 2: Introduce the most critical aggressor net. (𝐶2)
• Phase 3: Incrementally add more aggressor nets based on their
criticality. (𝐶3)

Datasets are fed into the GraphCAD framework for training sequen-
tially from 𝐶1 to 𝐶3. Each intermediate subgraph generated during
this phased approach offers distinct insights, enhancing the training
dataset. By leveraging detailed subgraph information, the model
effectively handles complexities and improves its generalization
across the entire RC-VA graph.
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Figure 6: Illustration of the curriculum learning mechanism.

To maximize the benefits of curriculum learning, we further
design a customized loss function that can be written as follows:

𝐿(𝜃 ) = 1
𝑁

𝑁∑︁
𝑖=1

𝐶 · L(𝑦𝑖 , 𝑓 (𝑥𝑖 ;𝜃 )), (17)

where 𝜃 represents the model parameters andL is the mean squared
error (MSE) between the predicted and actual target delays. 𝑁 in-
dicates the total number of samples, with 𝑦𝑖 and 𝑥𝑖 as the target
and input values for the 𝑖-th sample, respectively. The complexity
coefficient 𝐶 , defined as the count of aggressor networks plus one,
weights the MSE of each sample to scale the loss with scenario
complexity. This approach ensures that more complex scenarios
exert a greater influence on model tuning. Additionally, the opti-
mizer’s learning rate is dynamically adjusted, decreasing gradually
to manage complexity and fine-tune parameters, thus preventing
overshooting in complex environments.

Note that in the final inference stage, we only need to input a com-
plete RC-VA graph to obtain the predicted results. This curriculum
learning strategy customizes training to meet the specific challenges
posed by the timing window, ensuring dynamic adaptation to the
cumulative effects of multiple aggressors.

4 Experiments
4.1 Dataset Preparation
We source our datasets from Opencores [14] and other open-source
hardware projects, as detailed in Table 2. The open-source 7nm
process design kit, ASAP7 [15], equipped with a CCS timing model,
is utilized to accurately characterize transistor delays. Our workflow
incorporates commercial tools for synthesis, placement, and routing,
followed by the collection of post-route Verilog and SPEF files. To
enhance model training, we apply a filtering step to identify victim-
aggressor pairs with significant crosstalk effects in the dataset. This
filtering is performed using an industrial-standard timer, referred
to as "Timer," in SI-mode, which has proven successful in sign-off
analysis. We extract pairs exhibiting pronounced crosstalk using
the report_si_bottleneck command. Note that this filtering
does not affect the precision of our inference results, ensuring that
predictions remain as accurate as if the data were unfiltered.

For relative feature extraction, we employ Timer in Non-SI mode
to generate timing reports. From these, we extract critical timing
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Table 2: IP cores in training, validation, and test sets.

Net Range IP
Train/Valid Test

<1w

ps2 [14], uart16550 [14], cavlc [14] wdsp [14]
wb_dma [14], gng [14], ac97 [14] ae18 [14]

mem_ctrl [14], mc6809 [14]
darkriscv [14], ha1588 [14]

tv80 [14], oc8051 [14], yacc [14]

<10w

picorv32 [14], WinoGen [19] wb2axip [14]
pci [14], arm9 [14], aes_core [14] LSU [20]

LoopBranchPredictor [20], sha3 [14] fpu [14]
mips32r1 [14], aes [14], ecg [14] vga_lcd [14]

ethmac [14], CSR [20] usb_device [14]
yadmc [14], LoadQueue [21]

<100w

L2TLB [20], rvsteel [14] SmallBoom [20]
fft256 [14], MediumBoom [20] BoomCore [20]
Sha3Rocket [22], Aquarius [14] or1200 [14]

MediumOctoBoom [20] SmallQuadBoom [20]
MegaOctoBoom [20], Cache [21] sparc [14]

LargeBoomAndRocket [22]

information for specific nets of interest, such as the arrival times of
drivers and receivers, which are detailed in Table 1.

To gather ground truth data, we employ Timer to generate the
spice decks for commercial SPICE simulations. Each victim net
and its corresponding aggressor nets are automatically assigned
simulation parameters. The aggressor nets are prioritized in the
simulation settings file based on the extent of their crosstalk impact,
facilitating the collection of subgraphs for curriculum learning.

4.2 Experimental Setup
We develop the framework with PYG [16] and PyTorch [17]. The
GraphCAD framework is trained and evaluated on a machine with
2.40GHz CPUs and two GPUs (10752 cores, 625.0 GFLOPS for FP64,
24GB of main memory). We initially partition the dataset into train-
ing, evaluation, and testing subsets to ensure generalizability. During
data loading, we utilize a SPEF parser [18] to extract RC parasitics
and then construct RC-VA graphs along with associated features.

The training process aims to minimize the customized loss func-
tion detailed in Equation (17), comparing estimated wire delay and
receiver’s slew (𝒅𝑒 , 𝒕𝑒 ) against the ground truth (𝒅𝑔 , 𝒕𝑔). Our model
features a five-layer HANConv with 32 hidden dimensions and 4
heads for the HGAT model. The Graph Transformer model includes
32 hidden channels with a dual-layer architecture of 5 layers each
for GraphSAGE and Transformer modules, supported by 8-head at-
tention and 0.2 dropouts. Themulti-head predictionmodel combines
outputs fromHGAT and Graph Transformer, utilizing a hidden layer
of size 128 for predicting delay features. We train our model with a
dynamically adjusted learning rate starting from 0.01 to 0.006 and a
batch size of 128 over 150 epochs. The training process takes approx-
imately 20 hours on a single GPU. Our approach relies solely on net
information and learned parameters, allowing the inductive model
to be applied to different designs without compromising accuracy,
even on unseen data.

4.3 Overall Performance
We compare our method with the commercial Timer and previous
state-of-the-art (SOTA) works for predicting crosstalk-affected de-
lays. Timer employs a traditional crosstalk analysis workflow that

Table 3: Test dataset statistics: g _cap (ground), c_cap (cou-
pling), x_cap (extraction) capacitors.

Benchmarks #Inst #Nets #FF g_cap c_cap x_cap

wdsp 5570 4850 890 3546 12778 1533
ae18 6942 6730 841 4930 33043 6924

wb2axip 15976 14885 1899 36102 43545 14901
usb_device 18115 18047 3756 20284 45966 7614

fpu 40079 36129 6433 85948 115629 35362
LSU 45413 43373 8757 185958 160272 68444

vga_lcd 85041 84560 17050 308980 241027 86749
SmallQuadBoom 170092 163276 20267 595202 584103 223029

SmallBoom 170287 163867 20189 643150 554004 241167
BoomCore 183703 178480 25438 788018 622525 295780
or1200 475718 656852 110553 507880 1319171 209013
sparc 856180 920686 179320 1165820 2504447 467219

includes electrical filtering and iterative delay calculation, often
resulting in pessimistic worst-case timing estimates. We also select
the SOTA NetTiming [7] for comparison, which uses GNNTrans
to estimate post-routing wire timing. However, this work does not
adequately address SI-analysis-related features, such as coupling
effect analysis. Additionally, we explore SI-driven timing predic-
tion studies like those in [3, 5]. Since these works have not been
open-sourced, we incorporate only the relevant features described,
along with the MLP mentioned in their studies, for our comparison.
Table 3 provides detailed statistics of the benchmark for the test
dataset. The overall performance comparison is presented in Table 4,
and the corresponding runtime data can be found in Table 5.

In Table 4, we present the effective RC-VA graphs used in our
experiments, where victim wire paths are extracted from these
graphs. The ratio of estimation error to victim wire paths for each
benchmark is expressed as 𝐸𝐸

𝑁𝑣𝑛𝑝
, where 𝐸𝐸 denotes the estimation

error and 𝑁𝑣𝑛𝑝 is the total number of victim wire paths. To further
elucidate, the estimation error is derived by comparing each work’s
calculated or predicted results with the SPICE simulation results,
where the estimation error for SPICE is inherently zero. In the
comparison of wire delays, Timer demonstrates the highest accuracy,
with GraphCAD’s estimation error being 8.21% higher than Timer’s
but still lower than the other two baselines, NetTiming and MLP,
by 5.40% and 17.73%, respectively. Regarding the slew for receivers,
GraphCAD outdoes Timer by 2.74% and significantly surpasses the
others by 10.46% and 26.79%. This considerable edge over other
machine learning-based methods in predicting delays highlights the
effectiveness of the GraphCAD framework. Although our proposed
framework does not outperform Timer in both two metrics, it is
noteworthy that GraphCAD operates in less than 25% of the runtime
required by Timer. This suggests that our approach is practically
valuable and efficient. Moreover, as Figure 7 shows, we analyze the
runtime speedup of our method against our baseline and SPICE.
We find that SPICE is notably slower in simulating large batches
of nets, with some simulations exceeding 10 seconds. All machine
learning (ML)-based approaches have reduced runtime bymore than
tenfold, with our work achieving a 33.16% speedup. As anticipated,
ML-based prediction models are faster than traditional methods,
reaffirming the need to develop rapid and effective techniques to
assess delays caused by crosstalk.
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Table 4: Comparison of estimation errors against SPICE results.

Benchmarks RC-VA Predicted Wire Delay Predicted Slew at Receiver
Timer NetTiming [7] MLP GraphCAD Timer NetTiming [7] MLP GraphCAD

wdsp 19 14.89% 31.32% 37.37% 25.66% 47.36% 30.04% 80.80% 26.03%
ae18 11 13.27% 23.39% 24.34% 16.42% 35.95% 35.71% 72.96% 34.82%

wb2axip 22 14.45% 24.37% 22.14% 12.51% 17.26% 22.54% 33.75% 10.17%
usb_device 99 14.91% 22.38% 31.21% 21.18% 30.46% 28.37% 53.25% 27.93%

fpu 183 10.19% 23.00% 29.05% 20.25% 21.82% 34.64% 39.79% 20.84%
LSU 31 7.93% 22.83% 41.00% 18.31% 39.30% 40.03% 80.16% 36.81%

vga_lcd 24 15.82% 32.18% 65.24% 19.59% 43.70% 24.33% 97.15% 20.45%
SmallQuadBoom 511 6.62% 26.43% 27.71% 24.07% 16.72% 36.18% 29.63% 22.28%

SmallBoom 402 8.44% 25.64% 34.83% 21.92% 20.26% 35.08% 29.75% 23.52%
BoomCore 326 11.41% 31.92% 33.50% 24.91% 16.84% 45.77% 25.57% 24.05%
or1200 2 12.36% 14.15% 76.56% 9.42% 15.86% 47.58% 42.14% 21.79%
sparc 174 10.30% 26.30% 29.00% 24.93% 19.47% 37.44% 28.72% 23.48%

Average - 11.72% 25.33% 37.66% 19.93% 27.08% 34.81% 51.14% 24.35%
Delta - -8.21% 5.40% 17.73% 0 2.74% 10.46% 26.79% 0

Table 5: Runtime comparison.

Benchmarks Runtime (s)
SPICE Timer NetTiming [7] MLP GraphCAD

wdsp 34.222 12.363 3.004 2.641 2.126
ae18 18.687 11.780 3.252 2.945 1.559

wb2axip 38.667 15.045 4.297 1.180 2.188
usb_device 169.281 16.026 4.838 1.225 5.905

fpu 321.501 21.878 5.862 1.199 9.246
LSU 55.532 24.155 5.296 1.117 2.371

vga_lcd 46.886 16.284 5.896 1.131 2.222
SmallQuadBoom 903.420 43.565 7.397 2.886 25.861

SmallBoom 709.360 44.576 7.516 1.242 20.769
BoomCore 590.145 67.807 7.204 2.812 20.486
or1200 3.649 37.710 2.639 2.554 0.906
sparc 535.247 112.374 6.390 2.687 9.716

Average 285.550 35.297 5.299 1.968 8.613
Ratio 33.154 4.098 0.615 0.229 1.000
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Figure 7: Illustration of runtime speedup.

4.4 Curve Estimation & Fit
Crosstalk analysis often leads to noise analysis, prompting us to
extend our prediction framework to include the transition wave-
form at the receiver. We derive our ground truth data from .tr0
files generated by SPICE and focus on capturing the dynamics of
transition times by selecting 50 key points between 0 and VDD.
Our analysis concentrates on the x-coordinates while keeping the y-
coordinates fixed. To improve curve estimation, we’ve enhanced the
output channels of our multi-head prediction model, replacing the
MLP delay head with LSTM layers to better capture the continuity
of the x-coordinates. During our evaluation phase, the mean error
rate, calculated as the average of normalized absolute differences
between the predicted and target points (x-values), is below 10% in
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Figure 8: Curve prediction for SmallQuadBoom/n76718.Wave-
form shows receiver U64214/B2’s transition.

15.7% of all test cases. This suggests that, while there is clearly room
for improvement, GraphCAD still provides a reliable reference point
for ongoing optimizations. As depicted in Figure 8, we highlight an
instance of curve prediction where we achieve a mean error rate of
approximately 1.24%.

5 Conclusion
In summary, this work presents the GraphCAD framework, a pre-
diction model for crosstalk-affected delays that highlights the signif-
icance of coupling effects and overlapping nets in crosstalk analysis.
We innovatively apply a curriculum learning strategy, incorporat-
ing both the HGAT model and the graph transformer model with
customized features, to achieve precise predictions. Experimental
results from real-world designs demonstrate that our GraphCAD
framework performs the prediction tasks both accurately and effi-
ciently, outperforming commercial tools and SOTA methods. Future
efforts will concentrate on leveraging the predicted data for noise
analysis and optimization tasks.
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