
HeLO: A Heterogeneous Logic Optimization Framework by
Hierarchical Clustering and Graph Learning

Yuan Pu
The Chinese University of Hong Kong

Hong Kong SAR

Fangzhou Liu
The Chinese University of Hong Kong

Hong Kong SAR

Zhuolun He
The Chinese University of Hong Kong

Hong Kong SAR

Keren Zhu
Fudan University
Shanghai, China

Rongliang Fu
Chinese University of Hong Kong

Hong Kong SAR

Ziyi Wang
Chinese University of Hong Kong

Hong Kong SAR

Tsung-Yi Ho
Chinese University of Hong Kong

Hong Kong SAR

Bei Yu
Chinese University of Hong Kong

Hong Kong SAR

Abstract
Modern very large-scale integration (VLSI) designs usually consist
of modules with various topological structures and functionalities.
To better optimize such large and heterogeneous logic networks, it
is essential to identify the structural and functional characteristics of
its modules, and represent them with appropriate DAG types (such
as AIG, MIG, XAG, etc.) for logic optimization. This paper proposes
HeLO, a hetero-DAG logic optimization framework empowered by
hierarchical clustering and graph learning. HeLO leverages a hi-
erarchical clustering algorithm, which splits the original Boolean
network into sub-circuits by considering both topological and func-
tional characteristics. A novel graph neural network model is cus-
tomized to generate the topological-functional embedding (used
for distance calculation in hierarchical clustering) and predict the
best-fit DAG type of each sub-circuit. Experimental results demon-
strate that HeLO outperforms LSOracle, the SOTA heterogeneous
logic optimization framework, in terms of node-depth product (for
technology-independent logic optimization) and delay-area product
(for technology mapping) by 8.7% and 6.9%, respectively.
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Figure 1: Illustration of heterogeneous logic optimization.
Different logic components (sub-circuits) in the circuit are
represented as different DAG types, on which the correspond-
ing optimization strategies and algorithms will be applied.

1 Introduction
Logic synthesis stands as the foundational and essential step in
most electronic design automation (EDA) flows, converting register-
transfer-level (RTL) designs into implementations based on logic
gates. Logic synthesis can be divided into two important phases:
technology-independent logic optimization and technology map-
ping. In the phase of technology-independent logic optimization,
Boolean networks are transformed into multi-level logic structures
such as directed acyclic graphs (DAGs), including AND-inverter
graphs (AIG) and majority-inverter graphs (MIG), etc. This trans-
formation is followed by a series of optimization techniques aimed
at reducing the total number of logic nodes and the depth of the
network [1]. It has been observed that using different DAG repre-
sentations for distinct portions of a circuit can enhance the quality-
of-results (QoR) compared to utilizing a single DAG type across the
entire network. For example, majority-inverter graph (MIG) effi-
ciently represents carry operators, leading to more significant depth
reductions in arithmetic logic functions [2]. Similarly, XOR-majority
graph (XMG) excels inmaintaining self-duality and reducing area [3].
With the advancing technology node and increasing complexity of
very large-scale integration (VLSI), modern circuit designs are often
composed of various functional modules with distinct topological
structures. This complexity necessitates the adoption of heteroge-
neous DAG logic optimization, which maps different components in
a circuit to different DAG types, and renders logic optimization inde-
pendently. Figure 1 illustrates the heterogeneous logic optimization
process. However, most current logic optimization strategies are
homogeneous, converting the entire Boolean network into a single
DAG type for optimization, which often leads to suboptimal results.
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Several academic research studies have been conducted on hetero-
geneous logic optimization. Amarú et al. developed MixSyn, which
identifies AND/OR and XOR-intensive components in circuits and
conducts AND/OR optimization and XOR decomposition respec-
tively [4]. However, their methodology is customized for AND/OR-
XOR dominated circuits and is hard to extend to other gate types.
LSOracle [5] divides the whole Boolean network into several sub-
circuits using k-way partition, the Karnaugh map of each partition
is then converted into a 2-D grid image, and a deep neural net-
work (DNN) model is leveraged to predict the best-fit DAG type
for each partition (sub-circuit). LSOracle then represents and opti-
mizes these sub-circuits using the predicted DAG types, achieving
improvements in both area and delay. However, LSOracle ignores
the structural and functional characteristics of the circuit during
partitioning. Consequently, the sub-circuits generated may consist
of logic components with varying structures and functions, which
challenges the framework’s effectiveness in determining the optimal
DAG type for each partition. Moreover, topological information of
circuits is not utilized during best-fit DAG type prediction, leading
to a loss in prediction accuracy. The latest version of LSOracle [6]
adopts a heuristic approach to determine the best-fit DAG type for
each sub-circuit, applying different DAG logic optimizers and se-
lecting the one that minimizes the node-depth product. However,
this approach introduces redundant optimization processes and in-
creases the computational overhead.

Furthermore, we have made two noteworthy observations regard-
ing heterogeneous logic optimization.

Observation 1. When two sub-circuits exhibit similarities in their
structures or functionalities, they often select the same DAG type for
optimal optimization results.

This is because the efficacy of different DAG types varies with spe-
cific Boolean functions and topological structures. Previous research
work provides theoretical support for this observation: Amaru et
al. [2] showed that MIG is particularly adept at representing carry
operator structures, thus enhancing its effectiveness in optimizing
arithmetic designs over other DAG types. For circuits with self-
duality logic functions, XMG provides more compact representa-
tion and results in more area reduction than MIG and AIG [3]. For
circuits with a large amount of XOR functions, Háleček et al. [7]
demonstrated that XAG can lead to area reduction and even de-
lay optimization compared with other DAG types. Consequently,
circuits with similar functions or topologies generally opt for the
same DAG type to maximize expressive power and optimization
outcomes.

Observation 2. If two interconnected sub-circuits are functionally or
structurally similar, combining them into a single circuit and perform-
ing logic optimization often yields better results than optimizing each
separately.

The reason is that most of the multi-level optimization algorithms,
such as rewrite and refactor, are cut-based. By merging two circuits,
new cut choices are generated at their intersection, enlarging the
solution space of logic optimization.

Motivated by the two observations above, we propose HeLO, a
heterogeneous DAG-type logic optimization framework. Leverag-
ing a customized GNN model to generate the structural-functional

embedding and predict the best-fit DAG type for each sub-circuit,
HeLO allocates structurally/functionally similar logic components
into the same sub-circuit. Each sub-circuit is represented by the pre-
dicted best-fit DAG type and optimized correspondingly. In contrast
to LSOracle, which partitions circuits from top to bottom, HeLO em-
ploys an agglomerative clustering approach that works in a bottom-
up manner. This process begins with the creation of initial clusters
based on PO-rooted fanin cones, ensuring that each cluster retains
the complete functional and structural characteristics. By bottom-up
clustering, structurally/functionally similar logic components are
clustered together, while the functional and structural integrity of
the newly formed clusters are maintained. This bottom-up cluster-
ing allows HeLO to accurately identify and assign one optimal DAG
type that is best-fit for each component within a cluster, enhancing
the effectiveness of heterogeneous logic optimization.

The major contributions of this work are summarized as follows:
• This paper proposes HeLO, a novel heterogeneous DAG-type
logic optimization framework leveraging graph learning and
hierarchical clustering.
• We propose a novel graph neural network (GNN) model to cap-
ture the global and local structural/functional characteristics of
circuits. This model generates the topological-functional embed-
ding and predicts the best-fit DAG type for each circuit.
• We propose an agglomerative clustering algorithm guided by
graph learning. This algorithm aggregates logic components
with similar structures and functionalities into the same sub-
circuit.
• Experimental results demonstrate that HeLO can reduce the
logic optimization node-depth product (NDP) by 8.7%, and re-
duce the area-delay product (ADP) after technology mapping
by 6.9%, compared with LSOracle.

2 Preliminaries
2.1 Basics of Logic Synthesis
In the field of logic synthesis, a Boolean network is typically repre-
sented as a directed acyclic graph (DAG), where each node in the
network corresponds to a Boolean variable, and the connections
between nodes represent logical operations, such as AND, OR, NOT,
NAND, NOR, XOR, and XNOR. The terms Boolean network and cir-
cuit are used interchangeably. In a Boolean network, Primary inputs
(PIs) are nodes that do not have incoming edges (fanins), serving
as the initial points for signals entering the network. Conversely,
primary outputs (POs) are nodes without outgoing edges (fanouts),
representing the endpoints where signals exit the network. A cut of
a node 𝑛 is a set of nodes that must be traversed to reach 𝑛 from PIs.
A cut is K-feasible if its size does not exceed a pre-defined number
𝐾 . A transitive fanin (fanout) cone of node n is a subset of all nodes
of the network reachable through the fanin (fanout) edges from the
given node.

Current logic optimization strategies predominantly adopt amulti-
level approach. For example, SOTA logic synthesis tools such asABC
andMockturtle offer a suite of multi-level logic optimization algo-
rithms, including rewrite, refactor, balance, etc [8]. The primary
objective of logic optimization for a Boolean network is to reduce
both the node count and the logic depth, which are fundamental
metrics that directly impact the efficiency and performance of the
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circuit. However, optimizing these metrics often involves a trade-off.
Minimizing logic depth may require additional nodes to simplify
operations, while reducing nodes can increase depth due to node
merging. Therefore, node-depth product (NDP) is usually adopted as
the metric of technology-independent logic optimization. Moreover,
NDP serves as an indicative measurement for the area-delay product
(ADP) after technology mapping.

2.2 Heterogeneous Logic Optimization
For existing logic synthesis tools, Mockturtle [9] supports logic op-
timization for four DAG types, namely, and-inverter graph (AIG),
majority-inverter graph (MIG) [2], xor-majority graph (XMG) [10]
and xor-and graph (XAG) [7]. Integrating Mockturtle as the logic
synthesis library, LSOracle [5] has tailored specific logic optimiza-
tion scripts for the four DAG types mentioned above. In this work,
we also use these DAG types for heterogeneous logic optimization,
and adopt the same optimization scripts as LSOracle for each DAG
type during optimization.

3 Algorithm
This section first introduces the overall algorithmic flow of HeLO.
Then, DAGOpt embedding space, a latent space representing the
structural/functional characteristics of circuits, is defined. Finally,
three major techniques utilized by HeLO are detailed: (1) A novel
GNN model that captures the structural and functional information
of Boolean networks at both local view and global view. Its two
key tasks involve generating the DAGOpt embedding and deter-
mining the best-fit DAG type of a circuit. (2) A customized agglom-
erative clustering algorithm. This algorithm uses the pre-trained
GNN model to generate the DAGOpt embedding of each sub-circuit,
and iteratively merges structurally/functionally-similar sub-circuits.
(3) A hetero-DAG optimization approach. This approach optimizes
each sub-circuit referring to the predicted best-fit DAG type, and
integrates all optimized sub-circuits into one circuit.

3.1 Overall Flow
Figure 2 shows the overall flow of HeLO. Given the original circuit,
the fanin cone of each PO forms the initial cluster for agglomerative
clustering. During each iteration of the agglomerative clustering,
the customized GNN generates the structural-functional embedding
of each cluster, and the two connected clusters with the most similar
embedding will be combined into a new cluster. The process of
hierarchical clustering stops when the minimal distance between
any pair of connected clusters exceeds a predefined threshold. By the
agglomerative clustering algorithm, logic components with similar
structural and functional characteristics are combined into the same
sub-circuit. Sub-circuits generated by the agglomerative clustering
algorithm are fed to the process of hetero-DAG logic optimization,
where we employ a pre-trained GNN model to predict the best-fit
DAG type for each sub-circuit. Next, each sub-circuit is represented
by its predicted DAG type and optimized by the corresponding
DAG optimizer. Finally, all optimized clusters are integrated into
one circuit. A global logic optimization operation (rewrite) is then
applied to generate the optimized circuit. Note that small connected
components, such as𝐶4 in Figure 2, are excluded from the process of
clustering. The reason is that small connected components usually
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Figure 2: Overall Flow of HeLO.

possess small node numbers and simple topological structures, and
have no connection with other components in the circuit. Therefore,
small connected components can be optimized independently and
there is no need to include them in the process of clustering.

3.2 DAGOpt Embedding Space
To quantitatively measure the structural and functional similarities
across various circuits, we define the DAGOpt embedding space: For
a circuit 𝑐 , we represent it using four DAG types, namely, AIG, MIG,
XMG and XAG. Each of these representations is optimized using
the corresponding logic optimizer provided by LSOracle. After the
logic optimization, the node-depth product (NDP) for each DAG
representation of 𝑐 is obtained. We compile these NDP values into
a vector and normalize this vector by its magnitude to derive the
DAGOpt embedding 𝑒𝑐 .

𝑒𝑐 =
(NDPAIG,NDPMIG,NDPXMG,NDPXAG)∑

𝑡 ∈{AIG, MIG, XMG, XAG} NDP𝑡
. (1)

According to Observation 1, circuits with similar structural or
functional characteristics tend to choose similar DAG types for opti-
mal outcomes. Therefore, the DAGOpt embeddings of structurally
or functionally-similar circuits are expected to display similarity.

3.3 Customized Graph Neural Network
HeLO employs a pre-trained GNN model to predict the DAGOpt
embedding of a circuit. This embedding acts as the cluster coordinate
during the process of agglomerative clustering. Additionally, the
GNN model enables the inference of the best-fit DAG type for a
circuit based on its predicted DAGOpt embedding. To satisfy the
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Figure 3: Overview of our Customized Graph Neural Network
Model. Our model consists of two components: a graph iso-
morphismnetwork (GIN)model to capture the local structural
characteristics of the circuit, and a customized topological
graph neural network (TGNN) to learn the structural and
functional features of the circuit, at a global perspective.

above requirements, the GNN architecture is required to capture the
structural and functional characteristics of the circuit. We develop a
GNN architecture customized for this scenario.

Data Representation. In this work, the circuit design is initially
mapped to AIG, which is then represented as a homogeneous graph.
Each node in the homogeneous graph corresponds to one AND gate
from the original AIG. To embed both the functional and structural
information of the AIG circuit, we employ the feature engineering
technique utilized in GAMORA [11]. Specifically, two features are
selected for each node: node type (indicating whether the node is a
Primary Input, PrimaryOutput, or internal node) and input inversion
(indicating whether the two input edges of the node are inverted or
not). Additionally, we consider the number of fanouts for the node
as another node feature to further explore the structural information
of the circuit. By the feature of input inversion, the edge information
is embedded into the node feature, making it possible to represent
the circuit as a homogeneous graph and improve computational
efficiency.

Graph Neural Network Model. Our GNN model, designed to cap-
ture the structural and functional characteristics of circuits from
both global and local perspectives, comprises two parallel compo-
nents: (1) a multi-layer graph isomorphism network (GIN) model to
capture the local structural information and (2) a topological graph
neural network (TGNN) to learn the global functional and structural
information of a circuit through a topological messaging passing
scheme. Figure 3 visualizes the architecture and workflow of our
customized GNN model. The initial input, an AIG representing the
circuit, is simultaneously processed by the GIN and TGNN models.
These two models respectively yield local and global graph-level
embeddings (denoted as ℎlocal and ℎglobal). These embeddings are
then concatenated and fed into a Multilayer Perceptron (MLP) for
generating the DAGOpt embedding. Since the DAGOpt embedding
is a normalized vector summing to 1, the MLP utilizes a SoftMax
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Figure 4: Illustration of the topological message passing
scheme. The node embeddings of the circuit are updated in
the topological order and level by level.

activation function. The generated DAGOpt embedding is used to
determine the best-fit DAG type for the circuit. Specifically, the DAG
type corresponding to the smallest-value entry in the embedding is
selected as the predicted best-fit DAG type. Further details of each
model component will be discussed in the remaining sub-section.

The graph isomorphism network (GIN) [12] is a type of neural net-
work design to learn the structural information of graphs. The core
principle of GIN is to enhance the representational power of graph
neural networks (GNNs) to the extent of the Weisfeiler-Lehman
graph isomorphism test [13], a classical algorithm for testing graph
isomorphism. This is achieved by aggregating and updating node
features in a manner that closely mimics this test. GIN has shown
proficiency in mapping structurally similar sub-graphs to analogous
hidden embeddings. This makes it apt for capturing the local struc-
tural characteristics of circuits in this work. The node embedding of
node 𝑣 at the 𝑘-th layer (denoted as ℎ (𝑘)𝑣 ) is updated as:

ℎ
(𝑘)
𝑣 = MLP(𝑘) ((1 + 𝜖 (𝑘) ) · ℎ (𝑘−1)𝑣 +

∑︁
𝑢∈Fanin(𝑣)

ℎ
(𝑘−1)
𝑢 ), (2)

where Fanin(𝑣) denotes the fanin nodes of node 𝑣 , and 𝜖 (𝑘) denotes
the learnable parameters of the 𝑘-th layer. By deploying a 𝐾-layer
GIN model, we can obtain structural embeddings for 𝑘-hop subtrees
originating from each node. These individual node embeddings
are then aggregated into a single, unified structural representation,
denoted as ℎlocal, using a mean readout function:

ℎlocal = MEAN({ℎ𝑣 : 𝑣 ∈ 𝑉 }) . (3)

Building upon the topological message passing scheme intro-
duced in prior graph learning research [14–18], we propose a TGNN
architecture that facilitates message passing in topological order.
Starting from the Primary Inputs of the graph, each node aggregates
the embeddings of its fanin nodes to update its own representation.
Notably, the embedding of a specific node 𝑣 remains unchanged
until the embeddings of all its fanin nodes have been updated. Fig-
ure 4 shows one example of the topological node embedding update:
For the messaging passing at the first topological level, only the
embeddings of node 𝐷 , 𝐸 and 𝐹 are aggregated and updated. Then
for the second iteration of message passing, the embeddings of 𝐺 ,
𝐻 and 𝐼 are updated.

For a node 𝑣 , its aggregation at the 𝑘-th TGNN layer can be
expressed as follows:

ℎ
(𝑘)
𝑣 = MLP(Aggregate({ℎ (𝑘)𝑢 : 𝑢 ∈ Fanins(𝑣)}), ℎ (𝑘−1)𝑣 ), (4)

where the aggregated fanin embeddings of 𝑣 are combined with
the node embedding of 𝑣 at (𝑘 − 1)-th layer (ℎ (𝑘−1)𝑣 ). The combined
embedding is used to generate the updated node embedding ℎ (𝑘)𝑣
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Figure 5: (a) Two independent AIGs 𝐺1 and𝐺2 are connected
by edge 𝐴𝐹 , the 3-feasible cuts of node 𝐴 in 𝐺1 are {𝐵, 𝐹 } and
{𝐶, 𝐷, 𝐹 }. (b). By merging 𝐺1 and 𝐺2 into an AIG, a new cut of
node 𝐴, namely, {𝐵,𝐻, 𝐼 }, is generated.

through an MLP layer. The topological message-passing scheme
effectively emulates global-scale logic simulation, aggregating the
functional and structural information of the circuit to the primary
output (PO) nodes. We thus combine the embeddings of PO nodes
to form the global graph embedding, denoted as ℎglobal. Notably,
in the training phase, the input circuit often contains small con-
nected components, which are small in size and have no connection
with other components in the circuit and are not necessary to be
clustered. Including the PO node embeddings of small connected
components into ℎglobal could introduce irrelevant information and
negatively impact the model’s performance. Consequently, different
from previous works which combine the node embeddings of all
POs [19, 20], our approach excludes the PO embeddings of small
connected components in the combination process using mean
readout:

ℎglobal = Mean({ℎ
(𝑘)
𝑜 : 𝑜 ∈ ˆPOs}), (5)

where ˆPOs denotes the set of POs in the circuit which excludes the
PO(s) of all small connected component(s).

3.4 Agglomerative Clustering
For sub-circuit division, we propose a graph-learning-guided ag-
glomerative clustering algorithm. This algorithm is designed to
ensure that logic components sharing similar structural and func-
tional characteristics are grouped into the same sub-circuit. The
pseudo-code of the algorithm is detailed in Algorithm 1. In the ini-
tial step, named initial clusters generation (lines 2–4), the transitive
fanin cone of each primary output (PO) in the Boolean network
𝐵𝑁 is treated as an initial cluster. This approach is based on two
insights: (1) Multi-level logic optimization algorithms typically em-
ploy a cut-based method (e.g., rewrite, refactor). The fanin cone of a
PO encompasses every potential cut for its nodes, thus preserving
complete cut-based structural information for these nodes. (2) The
logic function at each PO only depends on the logic outputs of all
leave nodes in the PO fanin cone. Therefore, a PO fanin cone pre-
serves the independent structural and functional information of the
PO. Note that during the procedure of initial clusters generation, the
PO-rooted fanin cones of the Boolean network are handled sequen-
tially. If one node is already included in one initial cluster, it will be
excluded from the following fanin cones. This setup guarantees that
any pair of initial clusters have no overlap in their internal nodes,
simplifying the later stages of hetero-DAG logic optimization and
sub-circuits integration. Following initial clusters generation, each
initial cluster is regarded as an independent sub-circuit with its own
PIs, POs and internal nodes.

Algorithm 1 Graph-learning-guided Agglomerative Clustering
Input: Boolean network 𝐵𝑁 , Pre-trained GNNmodel G, the thresh-

old of maximal DAGOpt embedding distance 𝛿
Output: Allocated sub-circuit clusters S
1: S← ∅
2: for each PO-rooted transitive fanin cone 𝑓 𝑐 ⊆ 𝐵𝑁 do
3: S← S ∪ {𝑓 𝑐}; ⊲ initial clusters
4: end for
5: for each cluster 𝑐 ∈ S do
6: Embed 𝑐 into DAGOpt space by G;
7: end for
8: Find nearest connected cluster pair (𝑐𝑖 , 𝑐 𝑗 ); ⊲ Defined in Eq (7)
9: 𝐷min ← ∥𝑐𝑖 , 𝑐 𝑗 ∥;
10: while 𝐷min < 𝛿 do
11: 𝑐 ′ ← 𝑐𝑖 ∪ 𝑐 𝑗 ; ⊲ Merge two clusters
12: Embed 𝑐 ′ into DAGOpt space by G;
13: S← (S ∪ 𝑐 ′) \ {𝑐𝑖 , 𝑐 𝑗 }; ⊲ Update clustering
14: Find new nearest pair (𝑐𝑖 , 𝑐 𝑗 ) and 𝐷min ← ∥𝒄𝑖 , 𝒄 𝑗 ∥;
15: end while
16: return S
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Figure 6: Illustration of the agglomerative clustering process.
During each iteration of the agglomerative clustering, the
customized GNNmodel is used to predict the DAGOpt embed-
ding of each cluster. Then, the pair of connected clusters with
the most similar DAGOpt embeddings will be combined to
form a new cluster.

Referring to Observation 1, the DAGOpt embeddings of two struc-
turally/functionally similar sub-circuits are also similar. We thus
leverage the pre-trained GNN model introduced in Section 3.3 to
generate the DAGOpt embedding of each cluster, and use the em-
bedding as the cluster coordinate in the DAGOpt space (lines 5–7).
After being projected to the DAGOpt space, sub-circuits with similar
structural and functional characteristics are spatially closer.
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Referring to Observation 2, merging two connected sub-circuits
with similar structural or functional characteristics leads to larger so-
lution space and better results for logic optimization, as exemplified
in Figure 5. Therefore, during each iteration of the agglomerative
clustering, we first find the pair of connected clusters 𝑐𝑖 and 𝑐 𝑗 with
the smallest distance 𝐷min in the DAGOpt space (lines 8–9 and line
14). Before diving into the calculation of 𝑐𝑖 , 𝑐 𝑗 and 𝐷min, we define
Ŝ, denoting the collection of all interconnected pairs of clusters, as
in Equation (6):

Ŝ = {(𝑐𝑎, 𝑐𝑏 ) |𝑐𝑎, 𝑐𝑏 ∈ S, 𝑐𝑎 ≠ 𝑐𝑏 , 𝑐𝑎 ∩ 𝑐𝑏 ≠ ∅, (𝑐𝑏 , 𝑐𝑎) ∉ Ŝ}, (6)

where S denotes current set of clusters, and the condition 𝑐𝑎∩𝑐𝑏 ≠ ∅
ensures that each cluster pair in Ŝ are interconnected. We obtain 𝑐𝑖
and 𝑐 𝑗 and calculate 𝐷min in Equation (7):

(𝑐𝑖 , 𝑐 𝑗 ) = argmin
(𝑐𝑎,𝑐𝑏 ) ∈Ŝ

∥𝒄𝑎, 𝒄𝑏 ∥,

𝐷min = ∥𝒄𝑖 , 𝒄 𝑗 ∥,
(7)

where ∥𝒄𝑖 , 𝒄 𝑗 ∥ denotes the distance between 𝑐𝑖 and 𝑐 𝑗 in the DAGOpt
space. Subsequently, 𝑐𝑖 and 𝑐 𝑗 are merged into one new cluster,
denoted as 𝑐 ′ (line 12). The pre-trained GNNmodel G then generates
the DAGOpt embedding of 𝑐 ′ as its cluster coordinate (line 11). The
clustering process terminates when 𝐷min is less than a predefined
threshold 𝛿 .

Figure 6 provides an illustrative example of agglomerative cluster-
ing. Given the initial clusters of the original circuit (6 initial clusters
in total), two iterations of clustering are applied: In the first iteration,
clusters 𝐶1 and 𝐶2, which are interconnected and have the closest
embeddings in the DAGOpt space (indicating that 𝐶1 and 𝐶2 are
structually/functionally similar), are merged into a new cluster𝐶1∪2.
Similarly, in the second iteration, the pair of clusters that are closest
in the DAGOpt space, namely, 𝐶3 and 𝐶4, are merged to a new clus-
ter 𝐶3∪4. Note that the small connected component in the example,
namely, 𝐶6, has a small node size and simple topological structure
which can be optimized independently, and thus is excluded from
clustering for computational overhead reduction.

3.5 Hetero-DAG Logic Optimization
Following the process of agglomerative clustering, the hetero-DAG
logic optimization is applied to the generated sub-circuits. For each
sub-circuit 𝑐 , the pre-trained GNN model is employed to generate
its DAGOpt embedding 𝑒𝑐 = {𝑉AIG,𝑉MIG,𝑉XMG,𝑉XAG}. Then, the
best-fit DAG type of 𝑐 , denoted as 𝑡𝑐 , is selected as the DAG type
corresponding to the smallest value in 𝑒𝑐 :

𝑡𝑐 = argmin
𝑡 ∈{AIG, MIG, XMG, XAG}

𝑒𝑐𝑡 , (8)

where 𝑡 represents a DAG type, 𝑒𝑐𝑡 denotes the entry 𝑉 𝑡 in 𝑒𝑐 , and
𝑡𝑐 denotes the predicted best-fit DAG type for sub-circuit 𝑐 . For
example, if the DAGOpt embedding of a circuit 𝑐 is predicted as
(𝑉AIG = 0.33,𝑉MIG = 0.12,𝑉XMG = 0.30,𝑉XAG = 0.25), then MIG
is chosen as the best-fit DAG type of 𝑐 . Next, each sub-circuit will
be represented as the predicted DAG type and optimized by the
corresponding optimization script. Then, all optimized sub-circuits
are represented by MIG, the reason is that MIGs ⊃ AIGs [2] (⊃
indicates that MIG is a superset of AIG, which implies that the
capabilities and functionalities of AIG are fully encompassed within
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Figure 7: Distribution of node number in the collected dataset.
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Figure 8: Distribution of depth for the circuits in the collected
dataset.

MIG), MIGs ⊃ XMGs [10] and MIGs ⊃ XAGs [7], and converting
AIG/XMG/XAG to MIG does not modify the node count and depth.
Finally, all converted sub-circuits are integrated into a single circuit.
A rewrite operation is then applied to the integrated circuit to yield
the globally optimized circuit.

4 Experimental Results
We develop the GNN model and the agglomerative clustering algo-
rithm in Python with DGL and pytorch. The step of hetero-DAG
logic optimization is implemented in C++ with Mockturtle [9], a
C++-17 logic network library providing logic network implemen-
tations for AIG, MIG, etc. The whole flow is evaluated on a Linux
machine with 16 Intel Xeon Gold 6226R cores (2.90GHz) and one
NVIDIA A100 GPU with 40 GB of main memory.

In the remaining part of this section, we will first introduce our
dataset preparation process. Then, the training setting and the model
evaluation result will be demonstrated. Next, we will introduce the
experimental setting for the heterogeneous logic synthesis flow, in-
cluding the detailed settings and implementation details of HeLO
and other baselines. Moreover, the experiments for logic optimiza-
tion and technology mapping will be conducted. Finally, we render
runtime analysis.

Dataset Preparation. We collected a dataset comprising 5714 sub-
circuits from EPFL combinational arithmetic [21] and ISCAS’89
[22] benchmark suites, and OpenCores [23]. Each sub-circuit in
the dataset is considered as an individual instance. For data la-
belling of an instance 𝑐 , we employed four DAG-type logic opti-
mizers (AIG, MIG, XMG, XAG) provided by LSOracle to optimize
each instance, and obtained the resulting node-depth product (NDP)
for each DAG type. These NDP values were then integrated to gen-
erate the DAGOpt embedding 𝑒𝑐 , which was used as the ground
truth label for each instance. The best-fit DAG type for a circuit 𝑐
was determined as the one with the smallest value in its DAGOpt
embedding 𝑒𝑐 . In our dataset, the distributions of node numbers
and depths of the sub-circuits are shown in Figure 7 and Figure 8
respectively, and the distribution of sub-circuits favoring AIG, MIG,
XMG, and XAG as the best-fit DAG type is depicted in Figure 9.

Training and Evaluation. For the hyper-parameters of our GNN
model, we use 3 GIN (Graph Isomorphism Network) layers and 1
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Table 1: Technology-independent logic toptimization result. NDP denotes the product of node count and depth.

Circuit
Original ABC (30*resyn) Flowtune Mockturtle LSOracle HeLO (ours)

#nodes depth NDP #nodes depth NDP #nodes depth NDP #nodes depth NDP #nodes depth NDP #nodes depth NDP

pico-rv 18139 31 562309 15775 30 473250 14641 52 761332 20036 21 420756 18838 21 395598 19268 18 346824
chip_bridge 58789 31 1822459 57733 26 1501058 56377 23 1296671 59237 19 1125503 59538 19 1131222 58317 19 1108023

s38417 8568 28 239904 7842 24 188208 7730 22 170060 9016 18 162288 9028 18 162504 9522 16 152352
fpu 66522 33 2195226 58477 31 1812787 56731 33 1872123 66889 23 1538447 67248 22 1401752 68099 20 1361980

aes_core 21522 26 559572 19822 20 396440 19302 22 424644 20825 21 437325 21561 27 582147 21867 18 393606
des_perf 72720 16 1163520 72394 16 1158304 56593 16 905488 70176 15 1052640 70176 15 1052640 70176 15 1052640
ethernet 69763 41 2860283 66443 34 2259062 65684 31 2036204 70226 25 1755650 68482 24 1643568 71896 20 1437920
dyn_node 3926 27 106002 3620 24 86880 3596 22 79112 3979 19 75601 4191 21 88011 4034 18 72612
DMA 4295 20 85900 3450 17 58650 3301 19 62719 4348 15 65220 4208 17 71536 4342 15 65130
vga_lcd 105828 22 2328216 103583 21 2175243 103191 21 2167011 107657 16 1722512 108465 16 1735440 101534 17 1726078

fpga_bridge 318195 42 13364190 315998 37 11691926 301337 36 10848132 340217 26 8845642 325698 27 8793846 324356 24 7784544
i2c 1342 20 26840 1047 14 14658 1009 11 11099 1417 9 12753 1387 11 15257 1385 8 11080

mem_ctrl 46836 114 5339304 43608 104 4535232 36366 81 2945646 51762 69 3571578 52123 68 3544364 56592 61 3452112

normalize 1.000 1.000 1.000 0.967 0.882 0.860 0.911 0.863 0.769 1.037 0.656 0.678 1.018 0.678 0.673 1.019 0.596 0.619

Table 2: ASIC technology mapping result using the ASAP7 PDK. Area is in 𝑢𝑚2 and delay is in 𝑝𝑠. ADP denotes the product of
delay and area.

Circuit
Original ABC (30*resyn) Flowtune Mockturtle LSOracle HeLO (ours)

area delay ADP area delay ADP area delay ADP area delay ADP area delay ADP area delay ADP

pico-rv 775.5 439.1 340492.0 779.2 434.5 338563.3 764.3 680.6 520193.6 841.5 312.9 263316.0 778.2 312.9 243503.0 831.6 290.0 241153.0
chip_bridge 3016.0 310.1 935394.0 3097.2 325.8 1008896.6 3010.2 308.3 928117.2 2988.2 294.2 879253.0 3038.9 294.2 894162.0 3028.2 263.9 799010.0

s38417 418.6 280.3 117319.0 415.4 304.4 126459.9 415.8 302.0 125572.7 415.7 283.0 117648.0 432.3 267.8 115776.0 416.2 266.7 111016.0
fpu 3115.4 466.5 1453351.0 3134.1 467.5 1465111.8 3101.4 523.3 1622869.6 3111.5 455.9 1418551.0 3062.2 452.2 1384682.0 3127.9 324.8 1016029.0

aes_core 1032.6 280.0 289164.0 1019.9 293.6 299428.1 941.5 320.3 301562.5 1033.1 277.5 286670.0 1001.5 291.2 291683.0 1061.0 251.0 266276.0
des_perf 3325.8 242.2 805408.0 3647.0 265.4 968020.6 3114.1 267.8 833899.1 3457.8 232.8 804807.0 3457.8 232.8 804807.0 3457.8 232.8 804807.0
ethernet 3476.7 384.6 1337324.0 3424.2 470.4 1610860.5 3495.8 465.4 1627101.5 3486.5 309.6 1079382.0 3366.8 306.5 1031939.0 3407.0 289.4 985948.0
dyn_node 204.4 293.2 59925.0 198.7 317.8 63156.4 203.9 286.7 58450.0 201.7 266.3 53703.0 212.0 251.5 53321.0 205.5 231.7 47610.0
DMA 182.6 196.9 35963.6 178.7 198.1 35394.3 179.1 212.4 38041.2 185.3 206.9 38350.3 186.1 196.7 36611.9 185.8 196.7 36556.3
vga_lcd 6125.5 300.0 1837402.0 5374.8 262.4 1410242.6 5491.7 306.7 1684097.0 5896.3 237.8 1401913.8 5751.7 237.8 1367531.3 5627.5 259.5 1460459.2

fpga_bridge 17049.5 584.6 9967166.9 16578.4 499.6 8281754.7 15978.7 580.2 9271167.1 17053.6 331.0 5644403.8 16760.3 356.9 5982606.9 16385.7 340.9 5585048.8
i2c 57.7 247.3 14278.5 50.4 230.0 11597.4 50.9 161.1 8201.7 59.5 131.7 7840.7 59.7 133.0 7940.7 60.2 131.7 7931.6

mem_ctrl 2282.5 1559.8 3560243.5 2165.5 1496.9 3241553.5 1850.2 1191.1 2203815.5 2333.1 1086.0 2533863.3 2340.3 1086.0 2541704.5 2395.2 1021.3 2446214.2

normalize 1.000 1.000 1.000 0.976 0.997 0.909 0.940 1.004 0.926 1.000 0.792 0.700 0.985 0.791 0.711 0.979 0.734 0.665

AIG MIG XMG XAG
0

1,000

2,000

3,000
2,983

1,578

941

1,731

Figure 9: Distribution of best-fit DAG type selections for the
collected dataset. Note that some circuits may have more than
one best-fit DAG types when different logic optimizers yield
identical optimization outcomes, thus the sum of the four
columns is larger than the size of the dataset (5714).

TCNN (topologial graph neural network) layer. The hidden dimen-
sion of all the GNN layers and MLP is set to be 1024. The network
architecture is shown in Figure 3. The dataset is divided into train-
ing and testing sets in an 85:15 ratio. We trained the model for 200
epochs with Adam optimizer, the batch size and learning rate are set
to 10 and 1e-4, respectively. Regarding model evaluation, we eval-
uate the accuracy of best-fit DAG type prediction: After inferring
the DAGOpt embedding 𝑒𝑐 of a circuit 𝑐 by pre-trained model, the
DAG type corresponding to the smallest value in 𝑒𝑐 is chosen as

the best-fit DAG type of circuit 𝑐 . For the test case with more than
one best-fit DAG type, our prediction is considered accurate if it
matches one of those best-fit DAG types. The overall accuracy of
best-fit DAG type prediction by our trained model is 79.99%.

During the implementation of our proposed heterogeneous logic
optimization framework, HeLO, the size threshold of small con-
nected component is set to 300: any connected component within
the tested circuit with fewer than 300 nodes bypasses the hierarchi-
cal clustering stage and is directly optimized using the predicted
best-fit DAG type. For the evaluation benchmark selection of HeLO,
we use the same benchmarks from the original version and latest
version of LSOracle1 [5, 6]. Additionally, we expand our benchmark
set to include designs from the EPFL combinational random/control
benchmark suite with node sizes exceeding 1000. This expansion,
specifically including the 𝑖2𝑐 and 𝑚𝑒𝑚_𝑐𝑡𝑟𝑙 circuits, is based on
the observation that there is no significant performance difference
between homogeneous and heterogeneous logic optimization for
circuits with small size. Consequently, we set the benchmark size
threshold at 1000. Overall, our evaluation benchmark comprises 13

1The source of one design (𝑜𝑐_𝑎𝑞𝑢𝑎𝑟𝑖𝑢𝑠) is not available online, so we ignore this
case.
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circuits. The detailed design information of these designs are listed
in the “Original” column of Table 1.

Experimental Setting. For baseline comparison, we compareHeLO
against the latest version of LSOracle, two state-of-the-art (SOTA)
logic synthesis tools (ABC [24] andMockturtle [21]) and Flowtune [25],
one automatic logic optimization exploration framework. For ABC,
we conduct the resyn2 script sequentially for 30 times for AIG opti-
mization. To ensure a fair comparison, both HeLO and Mockturtle
employ identical optimization scripts provided by LSOracle for each
DAG type. The optimization strategies provided by LSOracle include
the combinations of balance, rewrite, refactor, fraig, re-substitution,
and so on. The details of the optimization scripts are available in
the source code of LSOracle 2. During the experiments, for Mock-
turtle, we apply the logic optimizer of each DAG type to the circuit
separately, and select the lowest node-depth product as the optimal
result. For LSOracle, which requires manual setting of the parameter
number of partitions, we experiment with a range of partition
numbers (from 2 to 10). Similarly, the minimal node-depth product
is selected as the final result. For Flowtune, the hyper-parameters
of repeat/iteration/sample/stage are set to 1, 3, 5 and 2, respectively.
Since there is no option for node-depth co-optimization in Flowtune,
we set the target metric to 0, which corresponds to the AIG node
minimization mode.

Evaluation of Logic Optimization. Table 1 shows the technology-
independent logic optimization result. Note that the output net-
works ofMockturtle, LSOracle and HeLO are MIGs, while ABC and
Flowtune outputs AIGs. Given that MIGs ⊃ AIGs (AND node can
be converted to majority-of-three node by setting one input to be
constant), we follow the experimental setting of LSOracle, where
a direct comparison of node count and depth is conducted across
ABC, Flowtune, Mockturtle, LSOracle and HeLO. As is shown in
Table 1, compared with other logic synthesis tools, HeLO achieves
the largest depth reduction. The resulted node-depth product (NDP)
of HeLO is reduced by 38.9%, 24.3%, 9.6% and 8.7%, compared with
the result of ABC (30*resyn), Flowtune,Mockturtle and LSOracle.

Evaluation of Technology Mapping. Although AIG node can
be converted to MIG node by setting one input to be constant, the
direct comparisons of node count and circuit depths between MIGs
and AIGs may still be biased due to the unoptimized nature of
the AIG-MIG conversion. To ensure a fair and consistent compar-
ison between HeLO and the baselines, and to further evaluate the
practicality of HeLO, we conduct ASIC technology mapping on
logic-optimized networks in Table 1, using ASAP 7nm standard
cell library [26]. For the detailed implementation, we first convert
each logic-optimized network into the Verilog format, and then
leverage ABC to employ technology mapping on them, using the
same script across all cases. Table 2 shows the result after tech-
nology mapping: among all logic synthesis tools, HeLO achieves
the smallest delay. In addition, the area-delay product (ADP) of
HeLO is reduced by 36.6%/39.2%/5.2%/6.9% compared with ABC
(30*resyn)/Flowtune/Mockturtle/LSOracle.

Runtime Analysis. The runtime of logic optimization for each
logic synthesis tool and HeLO is listed in Table 3. ABC, which only

2https://github.com/lnis-uofu/LSOracle

Table 3: Runtime analysis of ABC, Flowtune, Mockturtle,
LSOracle and HeLO for logic optimization. The unit of the
runtime is second (s).

Circuit ABC Flowtune Mockturtle LSOracle HeLO
(30*resyn) (ours)

pico-rv 15 324 29 113 57
chip_bridge 62 541 792 1616 262

s38417 7 81 3 56 30
fpu 86 665 28 633 480

aes_core 23 166 41 120 63
des_perf 121 530 93 680 70
ethernet 70 1007 1276 5106 803
dyn_node 3 20 23 18 12
DMA 3 24 2 28 59
vga_lcd 128 9174 3002 12460 3254

fpga_bridge 3032 9160 72461 70789 47611
i2c 1 12 7 11 21

mem_ctrl 56 876 61 414 337

Normalize. 0.068 0.426 1.467 1.735 1.000

provides AIG optimization, shows the least runtime but also the
least effective optimization results. Compared with ABC, Flowtune
conducts multi-armed bandit exploration for the combinations and
orders of ABC operators, thus is much slower. Compared with the
heterogeneous logic synthesis, ABC and Flowtune only conduct
AIG optimization, and is faster than HeLO. With the increase of the
circuit size, the runtime cost ofMockturtle for logic optimization in-
creases non-linearly.Mockturtle is quite slow when applied on large
Boolean networks. For example, it takes Mockturtle 72461 seconds
to finish AIG-oriented optimization on the test case 𝑓 𝑝𝑔𝑎_𝑏𝑟𝑖𝑑𝑔𝑒 ,
a large circuit with 318195 nodes. By dividing the whole network
into sub-circuits for optimization separately, HeLO is 1.467× faster
than Mockturtle. Moreover, HeLO is 1.735× faster than LSOracle.
The reason is that LSOracle of the latest version employs the logic
optimizers of 4 DAG types on each partition to determine the best-fit
DAG type; Meanwhile, HeLO predicts the best-fit DAG type by the
pre-trained model, and employs only one logic optimizer on each
sub-circuit, thus significantly increasing its speed.

5 Conclusion
This paper proposes HeLO, a heterogeneous DAG-type logic opti-
mization framework leveraging hierarchical clustering and graph
learning. Utilizing an agglomerative clustering algorithm, HeLO
partitions Boolean networks into sub-circuits based on topological
and functional characteristics. Then, a specialized GNN model is
employed to predict the best-fit DAG types for sub-circuits. Each sub-
circuit is represented in the predicted DAG type and optimized by
the corresponding logic optimizer. Experimental results demonstrate
that HeLO achieves improvements over LSOracle, reducing Node-
Depth Product and Delay-Area Product (after technology mapping)
by 9.0% and 12.8%, respectively.
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